Flexural wave scattering and dynamic stress concentration in a heterogeneous plate with multiple cylindrical patches by acoustical wave propagator technique

2005 ◽  
Vol 286 (4-5) ◽  
pp. 729-743 ◽  
Author(s):  
S.Z. Peng
2011 ◽  
Vol 488-489 ◽  
pp. 37-40
Author(s):  
Hong Liang Li ◽  
Jing Guo ◽  
Xiao Hua Shao

In mechanical engineering and aerospace engineering, thin plate structure is used widely. For the sake of fixing bolt, it often design open holes in the plate. Sometimes elliptic holes should be used inevitably. When the plate is overloaded or the load is changed regularly, flexural wave is propagating in the plate. Because there are holes, it can cause stress concentration. Stress concentration could decrease the bearing capacity of structure, and reduce the service life of structure. The problem of flexural wave scattering by holes in the plate is one of the important and interesting questions in aerospace engineering for the latest decades. There are lots of materials obtained by theoretical research and experimental investigation. The problem is complicated, because there are many factors influenced. It is hard to obtain analytic solutions except for several simple conditions. In this paper, based on the theory of elastic thin plate, by using wave function expansion method and multi local complex coordinates, scattering of flexural wave and dynamic stress concentration by double elliptic holes in the thin plate are investigated. In the complex plane, the displacement field aroused by incident wave and the scattering displacement field impacted by double elliptic holes comprised of Fourier-Bessel series with undetermined coefficients are constructed. Through applying the method of multi local complex coordinates, the equations with unknown coefficients can be obtained by using the stress-free condition of the double elliptic holes in the radial direction. According to orthogonality condition for trigonometric function, these equations can be reduced to a series of algebraic equations. Then the value of the unknown coefficients can be obtained by solving these algebraic equations. So the analytical solution of this problem is obtained. By using the displacement and stress expressions, an example is provided to show the effect of the change of relative location of the elliptic holes.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 246
Author(s):  
Hui Qi ◽  
Fuqing Chu ◽  
Yang Zhang ◽  
Guohui Wu ◽  
Jing Guo

Wave diffusion in the composite soil layer with the lined tunnel structure is often encountered in the field of seismic engineering. The wave function expansion method is an effective method for solving the wave diffusion problem. In this paper, the wave function expansion method is used to present a semi-analytical solution to the shear horizontal (SH) wave scattering problem of a circular lined tunnel under the covering soil layer. Considering the existence of the covering soil layer, the great arc assumption (that is, the curved boundary instead of the straight-line boundary) is used to construct the wavefield in the composite soil layer. Based on the wave field and boundary conditions, an infinite linear equation system is established by adding the application of complex variable functions. The finite term is intercepted and solved, and the accuracy of the solution is analyzed. Although truncation is inevitable, due to the Bessel function has better convergence, a smaller truncation coefficient can achieve mechanical accuracy. Based on numerical examples, the influence of SH wave incident frequency, soil parameters, and lining thickness on the dynamic stress concentration factor of lining is analyzed. Compared with the SH wave scattering problem by lining in a single medium half-space, due to the existence of the cover layer and the influence of its stiffness, the dynamic stress of the lining can be increased or inhibited. In addition, the lining thickness has obvious different effects on the dynamic stress concentration coefficient of the inner and outer walls of different materials.


1995 ◽  
Vol 111 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
H. G. Georgiadis ◽  
A. P. Rigatos ◽  
N. C. Charalambakis

Author(s):  
Tianshu Song ◽  
Tamman Merhej ◽  
Qingna Shang ◽  
Dong Li

In the present work, dynamic interaction is investigated theoretically between several circular cavities near the surface in a semi-infinite piezoelectric medium subjected to time-harmonic incident anti-plane shearing. The analyses are based upon the use of complex variable and multi coordinates. Dynamic stress concentration factors at the edges of the subsurface circular cavities are obtained by solving boundary value problems with the method of orthogonal function expansion. Some numerical solutions about two interacting subsurface circular cavities in a semi-infinite piezoelectric medium are plotted so as to show how the frequencies of incident wave, the piezoelectric characteristic parameters of the material and the structural geometries influence on the dynamic stress concentration factors.


1997 ◽  
Vol 63 (616) ◽  
pp. 2532-2537
Author(s):  
Noboru NAKAYAMA ◽  
Masahiko OHASHI ◽  
Hiroyuku TAKEISHI

Sign in / Sign up

Export Citation Format

Share Document