Analysis of two-dimensional fatigue crack propagation in thin aluminum plates using the Paris law modified by a closure concept

2019 ◽  
Vol 106 ◽  
pp. 513-527 ◽  
Author(s):  
Marcel Sato ◽  
Lucas S. Moura ◽  
Andres F. Galvis ◽  
Eder L. Albuquerque ◽  
Paulo Sollero
Author(s):  
Masaki Shiratori ◽  
Masaki Nagai ◽  
Naoki Miura

The authors have developed a software system called “SCANP™” by which users can analyze residual lives of surface-cracked structural components such as pressure vessels and their piping systems due to fatigue or SCC. The basic concept is based upon an influence function method by which the stress intensity factor “K” of a surface crack can be calculated for arbitrarily distributed surface stresses on the cracked surface. The authors and his group have developed a great number of database of “Kij”, the influence coefficient of the stress intensity factor, for many different types of surface-cracked structural components. The database is installed into the SCANP and the K-values for one of these cracks against an arbitrarily distributed surface stress can be calculated easily through the algorithm of superposition of the surface stress and the corresponding Kij data. The fatigue crack propagation can be simulated by integrating the Paris’ law, and it is easy to estimate the residual fatigue lives up to the leakage. Further, residual lives due to SCC, stress corrosion cracking, can be simulated by following the algorithm described in the JSME Standard. In this paper it is demonstrated how the SCANP works by applying it to some practical industrial problems such as fatigue crack and SCC crack propagations into welded residual stress field, and fatigue crack propagation initiated from double-surface cracks. In the latter case the simulation was compared with the experimental results in order to evaluate the validity of the developed system. It was found that the scatter of the material data describing the Paris’ law is far larger than the errors in estimating K-values, and therefore, the choice of these material data is very important when a user wants to use this program effectively. In order to use the developed program correctly, the authors have organized “SCANP User Meeting” where only the members can use the program. In the User Meeting the users give presentations about how they applied SCANP to analyze practical problems, and discuss about the validity of the modeling, and the computed results. In this paper some of these activities will be described, and the problem of verification, validation and uncertainty quantification is discussed.


2021 ◽  
Vol 7 (2) ◽  
pp. 22-30
Author(s):  
Luís Ramalho ◽  
Raul D. S. G. Campilho ◽  
Jorge Belinha ◽  
Paulo M. S. T. De Castro

Fatigue crack propagation is an undesirable phenomenon that may lead to catastrophic failures in many components and structures, therefore it is important to understand its underlying mechanics. To that effect, systematic parametric studies of fatigue crack propagation laws are interesting to determine how fatigue life varies with the constants that define the mechanical behavior of a given material in a fatigue situation, such as the Paris’ law constants, fracture toughness (Kc) or the stress range ??. The parametric studies performed in the present work assess the influence of several parameters, assuming that failure occurs when K>Kc, but also when all the material ahead of the crack is yielding. It was found that m and C, the Paris’ law parameters, are the most influential parameters in terms of fatigue life. The present study should help future designers when choosing materials for components or structures subjected to cyclic loads.


Author(s):  
A Albedah ◽  
Sohail MA Khan ◽  
B Bachir Bouiadjra ◽  
F Benyahia

In this paper, we analyzed experimentally and numerically the behavior of fatigue crack in aluminum plates repaired with bonded composite patch. We studied the behavior of repaired crack in AA 2024 T3 and AA 7075 T6 under two levels of applied fatigue stresses: maximal stresses of 70 and 120 MPa at a load ratio of 0.1. In the experimental part, the fatigue life of unrepaired and repaired notched specimens were determined. In the numerical part, the J integral around repaired and unrepaired crack tips was calculated. The numerical and the experimental results were used to plot the crack velocity (da/dN) as a function of the J integral. The analysis was completed with scanning electron microscopic observations on fracture surfaces of repaired and unrepaired specimens. It was found that patch improves the fatigue life but this improvement is considerably reduced with the increase in the applied fatigue load. The Al 2024 T3 presents better resistance to fatigue crack propagation in both repaired and unrepaired cases.


2014 ◽  
Vol 52 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Gwan Yeong Kim ◽  
Kyu Sik Kim ◽  
Joong Cheol Park ◽  
Shae Kwang Kim ◽  
Young Ok Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document