Vibration and damping analysis of smart sandwich nanotubes using surface-visco-piezo-elasticity theory for various boundary conditions

2022 ◽  
Vol 135 ◽  
pp. 337-358
Author(s):  
Ahmad Farrokhian ◽  
Mehdi Salmani-Tehrani
2017 ◽  
Vol 24 (17) ◽  
pp. 3974-3988 ◽  
Author(s):  
Maysam Naghinejad ◽  
Hamid Reza Ovesy

In the present article, the total potential energy principle and the nonlocal integral elasticity theory have been used to develop a novel finite element method for studying the free vibration behavior of nano-scaled beams. The formulations are based on Euler-Bernoulli beam theory and this method is able to properly analyze the free vibration of beams with various boundary conditions. By implementing the variational statements, the eigenvalue problem of the free vibration is obtained. The validation investigation is pursued by comparing the results of the current study with those available in the literature. The effects of nonlocal parameter, geometry parameters and boundary conditions on the free vibration of the Euler-Bernoulli beam are then studied.


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


2011 ◽  
Vol 255-260 ◽  
pp. 166-169
Author(s):  
Li Chen ◽  
Yang Bai

The eigenfunction expansion method is introduced into the numerical calculations of elastic plates. Based on the variational method, all the fundamental solutions of the governing equations are obtained directly. Using eigenfunction expansion method, various boundary conditions can be conveniently described by the combination of the eigenfunctions due to the completeness of the solution space. The coefficients of the combination are determined by the boundary conditions. In the numerical example, the stress concentration phenomena produced by the restriction of displacement conditions is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document