foam material
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

10.29007/6w78 ◽  
2022 ◽  
Author(s):  
Cong Hoa Vu ◽  
Thi Hieu Thao Le ◽  
Phuoc Khanh Huy Nguyen

Crash-dynamics research has always concentrated significantly in the safety, survivability of passengers in a car crash. To identify the capability of energy absorption of a crash box, a thin-walled structure will be modeled and simulated by ABAQUS software. Investigate the influence of material, cross-sectional, thickness factors on the energy absorption capacity of the tube, using MCDM – Multi-Criteria Decision-Making to get the best option and testing the improvement while filling the tube with Foam material. In this study, beside the cross-sectional, aluminum alloys and steel materials and thickness are factors that influence the energy absorption evaluation criteria, the foam material with difference density are surveyed to compare effectiveness between the foam-filled and hollow crashboxes. The results show that the folds of the foam-filled tube after deformation along the compressive direction will be more continuous and stable. More, the higher foam density, the greater the energy absorption. This prevents the crashbox from deviating from the direction of the force, help directing the collapse of the tube, thereby improving energy absorption without significantly increasing the weight of the structure.



Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4276
Author(s):  
Katarzyna Uram ◽  
Aleksander Prociak ◽  
Laima Vevere ◽  
Ralfs Pomilovskis ◽  
Ugis Cabulis ◽  
...  

This paper presents research into the preparation of rigid polyurethane foams with bio-polyols from rapeseed and tall oil. Rigid polyurethane foams were designed with a cryogenic insulation application for aerospace in mind. The polyurethane systems containing non-renewable diethylene glycol (DEG) were modified by replacing it with rapeseed oil-based low functional polyol (LF), obtained by a two-step reaction of epoxidation and oxirane ring opening with 1-hexanol. It was observed that as the proportion of the LF polyol in the polyurethane system increased, so too did the apparent density of the foam material. An increase in the value of the thermal conductivity coefficient was associated with an increase in the value of apparent density. Mechanical tests showed that the rigid polyurethane foam had higher compressive strength at cryogenic temperatures compared with the values obtained at room temperature. The adhesion test indicated that the foams subjected to cryo-shock obtained similar values of adhesion strength to the materials that were not subjected to this test. The results obtained were higher than 0.1 MPa, which is a favourable value for foam materials in low-temperature applications.



2021 ◽  
Vol 64 (1) ◽  
pp. 42-49
Author(s):  
Christine Taylor ◽  
Budy Notohardjono ◽  
Suraush Khambati ◽  
Shawn Canfield

Abstract In optimizing packaging design, the product’s fragility is qualified by a protype undergoing quantitative and qualitative tests that rely heavily on past knowledge and experiments. By the addition of finite element analysis (FEA), the product’s fragility can be obtained in the initial stages of product design with material characterization and simulation. FEA can predict Gs on the product as well as examine the strains, which interpret product failure more easily in the design stage. To incorporate FEA, first the foam material was measured at various strain rates under compression. Next a shipping package containing an Al block with consistent density was dropped at different heights—610 mm (24”), 915 mm (36”), and 1067 mm (42”)—to confirm the methodology. An I/O book was packaged for the final demonstration incorporating FEA with an electronic card package. In an electronic card package, the electronic assemblies are sensitive to strains on the system board. If the strains on the board are high, the assemblies’ solder connections to the board could be damaged and result in a defect during shipment. The simulations’ predicted Gs and board strains were compared to experimental drop testing results at 610 mm (24”) and 915 mm (36”). The simulation results for each sensor location were within reasonable approximation of the experimental results, verifying that FEA could be used in the initial design stages to predict the accelerations and strains for packaging development in parallel to the product design.



Author(s):  
Xudong Fang ◽  
Zhenghao Mei ◽  
Jiaqi Chen ◽  
Siyi Xiong ◽  
Jingyuan Ning ◽  
...  


Author(s):  
A. S. Panasyugin ◽  
N. P. Masherova ◽  
A. R. Tsyganov ◽  
N. D. Pavlovsky

The aim of the paper is investigation of neutralization of solvent vapors of the brand 646 by an adsorption-catalytic method. The adsorption-catalytic method includes the following stages: adsorption of the solvent components by adsorbent, thermal desorption and periodic flameless catalytic oxidation of organic substances to carbon dioxide and water. Synthetic zeolite of the NaX brand was used as a sorbent, catalyst was porous Al2O3/SiO2 ceramic foam material with an active catalytic phase. Solvent contains aceton, toluene, butylacetate, ethanol, ethyl cellosolve, n-butanol. It is shown that the value of the sorption volume of zeolite for each class of compounds depends on the certain factors: the length and structure of the carbon skeleton, the position of the hydroxyl group (for alcohols and esters), number of methyl groups in the molecules (for benzene derivatives). The conversion of the mixed solvent components was 65.4–90.1 %.



Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1195
Author(s):  
Andrea Diani ◽  
Luisa Rossetto

A smart possible way to cool electronics equipment is represented by passive methods, which do not require an additional power input, such as Phase Change Materials (PCMs). PCMs have the benefit of their latent heat being exploited during the phase change from solid to liquid state. This paper experimentally investigates the melting of different PCMs having different melting temperatures (42, 55 and 64 °C). Two copper foams, having 10 PPI and relative densities of 6.7% and 9.5%, i.e., porosities of 93.3% and 90.5%, respectively, are used to enhance the thermal conductivity of PCMs. The block composed by the PCM and the copper foam is heated from one side, applying three different heat fluxes (10, 15 and 20 kW m−2): the higher the heat flux, the higher the temperature reached by the heated side and the shorter the time for a complete melting of the PCM. The copper foam with a relative density of 9.5% shows slightly better performance, whereas the choice of the melting temperature of the PCM depends on the time during which the passive cooling system must work. The effect of the foam material is also presented: a copper foam presents better thermal performances than an aluminum foam with the same morphological characteristics. Finally, experimental dimensionless results are compared against values predicted by a correlation previously developed.



2021 ◽  
Vol 149 ◽  
pp. 103773
Author(s):  
Baohui Yang ◽  
Zengqiang Cao ◽  
Zhengping Chang ◽  
Guo Zheng


2021 ◽  
Vol 26 ◽  
pp. 102155
Author(s):  
L.S. Mendieta-Rodríguez ◽  
L.M. González-Rodríguez ◽  
José J. Alcaraz-Espinoza ◽  
Alicia E. Chávez-Guajardo ◽  
Juan C. Medina-Llamas




Sign in / Sign up

Export Citation Format

Share Document