Efficiency improvement of radial basis function meshless method in conjunction with bayesian theorem for electrical tomography of heterogeneous concrete

2022 ◽  
Vol 135 ◽  
pp. 382-393
Author(s):  
Saeid Movahedi ◽  
Nasser Taghizadieh
Author(s):  
Ram Bilas Prasad ◽  
Jeeoot Singh ◽  
Karunesh Kumar Shukla

This article presents a torsional analysis of solid elliptical, hollow circular, and actual bone sections of orthotropic and functionally graded material. The formulation of the governing equation is done using the Saint-Venant torsion theory. A classical power law is considered for the modelling of functionally graded material. Five different radial basis functions-based meshless methods are used for the discretization of the governing differential equations. MATLAB code is developed to solve the discretized partial differential equations. A convergence and validation study has been carried out to demonstrate the effectiveness and accuracy of the present method. Numerical examples for torsional rigidity and shear stresses are presented for circular, elliptical, and bone-shaped irregular sections made up of orthotropic and functionally graded materials. Finally, the proposed radial basis function-based meshless method is applied to the modelling and torsional analysis of an actual bone cross-section.


Author(s):  
Eduardo Divo ◽  
Alain J. Kassab

A localized radial basis function (RBF) meshless method is developed for coupled viscous fluid flow and convective heat transfer problems. The method is based on new localized radial-basis function (RBF) expansions using Hardy Multiquadrics for the sought-after unknowns. An efficient set of formulae are derived to compute the RBF interpolation in terms of vector products thus providing a substantial computational savings over traditional meshless methods. Moreover, the approach developed in this paper is applicable to explicit or implicit time marching schemes as well as steady-state iterative methods. We apply the method to viscous fluid flow and conjugate heat transfer (CHT) modeling. The incompressible Navier-Stokes are time marched using a Helmholtz potential decomposition for the velocity field. When CHT is considered, the same RBF expansion is used to solve the heat conduction problem in the solid regions enforcing temperature and heat flux continuity of the solid/fluid interfaces. The computation is accelerated by distributing the load over several processors via a domain decomposition along with an interface interpolation tailored to pass information through each of the domain interfaces to ensure conservation of field variables and derivatives. Numerical results are presented for several cases including channel flow, flow in a channel with a square step obstruction, and a jet flow into a square cavity. Results are compared with commercial computational fluid dynamics code predictions. The proposed localized meshless method approach is shown to produce accurate results while requiring a much-reduced effort in problem preparation in comparison to other traditional numerical methods.


2006 ◽  
Vol 129 (2) ◽  
pp. 124-136 ◽  
Author(s):  
Eduardo Divo ◽  
Alain J. Kassab

A localized radial basis function (RBF) meshless method is developed for coupled viscous fluid flow and convective heat transfer problems. The method is based on new localized radial-basis function (RBF) expansions using Hardy Multiquadrics for the sought-after unknowns. An efficient set of formulae are derived to compute the RBF interpolation in terms of vector products thus providing a substantial computational savings over traditional meshless methods. Moreover, the approach developed in this paper is applicable to explicit or implicit time marching schemes as well as steady-state iterative methods. We apply the method to viscous fluid flow and conjugate heat transfer (CHT) modeling. The incompressible Navier–Stokes are time marched using a Helmholtz potential decomposition for the velocity field. When CHT is considered, the same RBF expansion is used to solve the heat conduction problem in the solid regions enforcing temperature and heat flux continuity of the solid/fluid interfaces. The computation is accelerated by distributing the load over several processors via a domain decomposition along with an interface interpolation tailored to pass information through each of the domain interfaces to ensure conservation of field variables and derivatives. Numerical results are presented for several cases including channel flow, flow in a channel with a square step obstruction, and a jet flow into a square cavity. Results are compared with commercial computational fluid dynamics code predictions. The proposed localized meshless method approach is shown to produce accurate results while requiring a much-reduced effort in problem preparation in comparison to other traditional numerical methods.


2014 ◽  
Vol 1082 ◽  
pp. 383-386
Author(s):  
Yu Liang ◽  
Song Xiang ◽  
Wei Ping Zhao

Stress of simply functionally graded plates is predicted by the meshless method based on inverse multiquadrics radial basis function. The genetic algorithm is utilized to optimize the shape parameter of inverse multiquadrics radial basis function. The stress of simply functionally graded plates is calculated using the inverse multiquadrics with optimal shape parameter and compared with the analytical results of available literatures.


Sign in / Sign up

Export Citation Format

Share Document