Heat Transfer, Part A
Latest Publications


TOTAL DOCUMENTS

106
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

0791842215

Author(s):  
Assunta Andreozzi ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study a numerical investigation of mixed convection in air in horizontal parallel walled channels with moving lower plate is carried out. The moving lower plate has a constant velocity and it is adiabatic, whereas the upper one is heated at uniform heat flux. The effects of horizontal channel height, heat flux and moving plate velocity are analyzed. Results in terms of temperature and stream function fields are given and the mass flow rate per unit of length and divided by the dynamic viscosity is reported as a function of Reynolds number based on the moving plate velocity. For stationary condition of lower plate, a typical C–loop inside the horizontal channel is detected. Different flow motions are observed in the channel and the two reservoirs, depending on the heat flux values and the distance between the heated upper stationary plate and lower adiabatic moving plate. The dimensionless induced mass flow rate presents different increase between the Reynolds number lower or greater than 1000.


Author(s):  
Fengshan Liu ◽  
David R. Snelling ◽  
Gregory J. Smallwood

Histories of temperature and incandescence intensity of nanosecond pulsed-laser heated soot particles of polydispersed primary particles and aggregate sizes were calculated using an aggregate-based heat transfer model at pressures from 1 atm up to 50 atm. The local gas temperature, distributions of soot primary particle diameter and aggregate size assumed in the calculations were similar to those found in an atmospheric laminar diffusion flame. Relatively low laser fluences were considered to keep the peak particle temperatures below about 3400 K to ensure negligible soot particle sublimation. The shielding effect on the heat conduction between aggregated soot particles and the surrounding gas was accounted for based on results of direct simulation Monte Carlo calculations. After the laser pulse, the temperature of soot particles with larger primary particles or larger aggregates cools down slower than those with smaller primary particles or smaller aggregates due to smaller surface area-to-volume ratios. The effective temperature of soot particles in the laser probe volume was calculated based on the ratio of thermal radiation intensities of the soot particle ensemble at 400 and 780 nm. Due to the reduced mean free path of molecules with increasing pressure, the heat conduction between soot particles and the surrounding gas shifts from the free-molecular to the transition regime. Consequently, the rate of conduction heat loss from the soot particles increases significantly with pressure. The lifetime of laser-induced incandescence (LII) signal is significantly reduced as the pressure increases. At high pressures, the time resolved soot particle temperature is very sensitive to both the primary particle diameter and the aggregate size distributions, implying the time-resolved LII particle sizing techniques developed at atmospheric pressure lose their effectiveness at high pressures.


Author(s):  
A. Druma ◽  
M. K. Alam ◽  
M. Anghelescu ◽  
C. Druma ◽  
B. Maruyama

The relationship between the 3D structure of the open-cell carbon foams and its properties is particularly difficult to establish without a “true” representation of the foam. The complex structure of graphitized carbon foams is difficult to capture using one or even two-dimensional models. Several attempts have been made to model carbon foams as cellular materials. However, the regular models cannot account for the complex interaction between the pores in the true foam. The present paper characterizes the structure of “true” foam and links it to its thermal and mechanical properties.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


Author(s):  
Mulugeta Markos ◽  
Vladimir S. Ajaev ◽  
G. M. Homsy

We develop a lubrication type model of a liquid flow in a wedge in the limit of small capillary numbers and negligible gravity. The model incorporates the effects of capillary pressure gradients and evaporation. Steady vapor-liquid interface shapes are found for a range of parameters. In the limit of weak evaporation the flow is the same in all cross-sections and can be controlled by changing the wedge angle. We find the wedge angle that results in the maximum value of the flow rate for a given contact angle. For high evaporation rates, both the flow rate and the amount of liquid in each cross-section along the wedge decrease until the point of dry-out is reached. The location of the dry-out point is studied as a function of evaporation. Practical suggestions about optimization of micro heat pipes are given.


Author(s):  
Bo Shi ◽  
Shashank Sinha ◽  
Vijay K. Dhir

This paper presents a molecular simulation study of the contact angles of water droplets on a platinum surface for a range of temperatures. SPC/E and Z-P model are used for the water-water and water-platinum potentials, respectively. The results show that the contact angle decreases with the increase of system temperatures and increases when the potential decreases. When the temperature is high enough, the contact angles drop to zero degrees. The results were compared with the argon-virtual solid wall and water-Aluminum results, a similar trend was found.


Author(s):  
Hongsheng Guo ◽  
Gregory J. Smallwood ◽  
Cedric Galizzi ◽  
Dany Escudie´

A V-shaped laminar stratified flame was investigated by numerical simulation. The primitive variable method, in which the fully elliptic governing equations were solved with detailed chemistry and complex thermal and transport properties, was used. The results indicate that in addition to the primary premixed flame, the stratified charge in a combustor causes the formation of a diffusion flame. The diffusion flame is located between the primary premixed flame branches. The fuel is fully decomposed and converted to some intermediate species, like CO and H2, in the primary premixed flame branches. Due to the shortage of oxygen, the formed CO and H2 in the fuel rich region of the premixed flame branch is further transported to the downstream until they meet the oxygen from the fuel lean region. This leads to the formation of the diffusion flame. There is an interaction between the diffusion flame and the primary premixed flame branches. The interaction intensifies the burning speed of the primary premixed flame. Both the heat transfer and the diffusion of hydrogen and some radicals cause the interaction. With the increase of the stratified charge region, the diffusion flame zone is enlarged and the interaction is enhanced.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

The capabilities of the Detached Eddy Simulation (DES) and the Unsteady Reynolds Averaged Navier-Stokes (URANS) versions of the 1988 κ-ω model in predicting the turbulent flow field and the heat transfer in a two-pass internal cooling duct with normal ribs is presented. The flow is dominated by the separation and reattachment of shear layers; unsteady vorticity induced secondary flows and strong streamline curvature. The techniques are evaluated in predicting the developing flow at the entrance to the duct and downstream of the 180° bend, fully-developed regime in the first pass, and in the 180° bend. Results of mean flow quantities, secondary flows, friction and heat transfer are compared to experiments and Large-Eddy Simulations (LES). DES predicts a slower flow development than LES, while URANS predicts it much earlier than LES computations and experiments. However it is observed that as fully developed conditions are established, the capability of the base model in predicting the flow and heat transfer is enhanced by switching to the DES formulation. DES accurately predicts the flow and heat transfer both in the fully-developed region as well as the 180° bend of the duct. URANS fails to predict the secondary flows in the fully-developed region of the duct and is clearly inferior to DES in the 180° bend.


Author(s):  
Bilal Y. Maiteh

This paper describes the results of an experimental investigation into the effect of the mainstream flow history on the film cooling effectiveness and the heat transfer characteristics from the combination of one row of simple angle holes and one row of compound angle holes. The mainstream flow history includes: favorable pressure gradient factors in the range −1.11 × 10−6 to +1.11 × 10−6 and turbulence intensity in the range 0.3% to 4.7%. The presence of favorable pressure gradients in the flow reduces the film cooling protection of the surfaces from both compound angle holes or combination of simple and compound angle holes, while the presence of adverse pressure gradients increases the film cooling effectiveness at low blowing rate and decreases it at high blowing rate. Increasing the turbulence intensity reduces the film cooling effectiveness from compound angle holes or combination of simple and compound angle holes.


Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang ◽  
Naoko Iino

A theoretical study is performed to investigate unsteady thermal and fluid flow transport phenomena over vertical slot-perforated flat fins with heat sink, which are placed in a natural convection environment. Emphasis is placed on the effects of Rayleigh number and fin pitch on heat transfer performance and velocity and thermal fields. It is found from the study that (i) in the high Rayleigh number region, the alternating changes in the fluid flow take place for larger fin pitch, (ii) the alternating flow in the space area between two fins is mutually interacted by the corresponding one from the adjacent in-line plate fines, resulting in an amplification of heat transfer performance, and (iii) heat-transfer performance is intensified with an increase in the fin pitch, whose trend becomes larger in the higher Rayleigh number region considered here.


Sign in / Sign up

Export Citation Format

Share Document