Redefining core preliminary concepts of classic Rough Set Theory for feature selection

2017 ◽  
Vol 65 ◽  
pp. 375-387 ◽  
Author(s):  
Muhammad Summair Raza ◽  
Usman Qamar
2021 ◽  
pp. 107993
Author(s):  
Peng Zhou ◽  
Peipei Li ◽  
Shu Zhao ◽  
Yanping Zhang

2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


Complexity ◽  
2014 ◽  
Vol 20 (5) ◽  
pp. 50-62 ◽  
Author(s):  
Mohammad Taghi Rezvan ◽  
Ali Zeinal Hamadani ◽  
Seyed Reza Hejazi

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Suresh Satapathy ◽  
Anima Naik ◽  
K. Parvathi

AbstractRough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. But it can be made to be optimal using different optimization techniques. This paper proposes a new feature selection method based on Rough Set theory with Teaching learning based optimization (TLBO). The proposed method is experimentally compared with other hybrid Rough Set methods such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) and the empirical results reveal that the proposed approach could be used for feature selection as this performs better in terms of finding optimal features and doing so in quick time.


Sign in / Sign up

Export Citation Format

Share Document