Failure analysis of an exploded large-capacity liquid storage tank using finite element analysis

2020 ◽  
Vol 110 ◽  
pp. 104401
Author(s):  
Mahmoud Abo-Elkhier ◽  
Kamel Muhammad
2020 ◽  
Vol 117 ◽  
pp. 104791
Author(s):  
Nitikorn Noraphaiphipaksa ◽  
Piyamon Poapongsakorn ◽  
Anat Hasap ◽  
Chaosuan Kanchanomai

2018 ◽  
Vol 4 (4) ◽  
pp. 13
Author(s):  
Anand Mohan Singh ◽  
Megha Bhawsar ◽  
Neeraj Kumar Nagayach

In this present work a virtual environment has been created to investigate the failure analysis on spur gear assembly in which structural analysis, fatigue failure analysis and contact stress analysis have been performed using finite element method. For this work, a three dimensional cad model has been created and imported to ANSYS workbench for further finite element analysis. Various boundary conditions have been used to perform structural, fatigue failure assessment and contact analysis such as revolute joints is provided with Body Ground connection for 60 rpm for structure analysis, Augmented Lagrange method is set for contact analysis, for fatigue life analysis the fatigue strength factor is used as 0.85 for fully reverse loading and the life of shear stress in cycles and for the contact analysis linear and nonlinear contact are used for both source and target body. It has been observe that contact stress and bending stress not attain their maximum values at the same points, if the contact stress minimize in primary design stage then the failure of gear can minimized by analysis of the problem during the earlier stage of design. It can also be state that by using finite element analysis complex analysis like fatigue and contact analysis can be performed very accurately within a very short time and cost effectively rather than experimental analysis.


Author(s):  
Mohamed R. Chebaro ◽  
Nader Yoosef-Ghodsi ◽  
Howard K. Yue

API Standard 653 addresses issues related to the inspection, repair, alteration and reconstruction of steel storage tanks built according to API Standard 650 or API 12C to help maintain tank integrity. Although the standard covers three types of tank settlement, namely edge, bottom and shell, this paper focuses on the assessment of shell settlement. It also provides a comparison between an analytical model based on API Standard 653 and a finite element analysis (FEA) model that replicates field operating loading and settlement conditions of storage tanks. A basis for comparison between both models was established from the maximum allowable settlement and strain values. Several scenarios were generated using actual field data collected from steel storage tanks located in Alberta to illustrate the correlation between the two models. Specific information on the storage tanks under consideration cannot be disclosed for confidentiality reasons.


2014 ◽  
Vol 45 ◽  
pp. 292-299 ◽  
Author(s):  
Yi Zhou ◽  
Zhiqiang Huang ◽  
Li Tan ◽  
Yachao Ma ◽  
Chengsong Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document