Three-dimensional modeling of ductile crack growth: Cohesive zone parameters and crack tip triaxiality

2005 ◽  
Vol 72 (13) ◽  
pp. 2072-2094 ◽  
Author(s):  
C.R. Chen ◽  
O. Kolednik ◽  
J. Heerens ◽  
F.D. Fischer
Author(s):  
Do-Jun Shim ◽  
Gery Wilkowski ◽  
David Rudland ◽  
Brian Rothwell ◽  
James Merritt

This paper presents the development of a dynamic ductile crack growth model to simulate an axially running crack in a pipe by finite element analyses. The model was developed using the finite element (FE) program ABAQUS/Explicit. To simulate the ductile crack propagation, a cohesive zone model was employed. Moreover, the interaction between the gas decompression and the structural deformation was simulated by using an approximate three-dimensional pressure decay relationship from experimental results. The dynamic ductile crack growth model was employed to simulate 152.4 mm (6-inch) diameter pipe tests, where the measured fracture speed was used to calibrate the cohesive model parameters. From the simulation, the CTOA values were calculated during the dynamic ductile crack propagation. In order to validate the calculated CTOA value, drop-weight tear test (DWTT) experiments were conducted for the pipe material, where the CTOA was measured with high-speed video during the impact test. The calculated and measured CTOA values showed reasonable agreement. Finally, the developed model was employed to investigate the effect of pipe diameter on fracture speed for small-diameter pipes.


Author(s):  
Jie Xu ◽  
Zhiliang Zhang ◽  
Erling O̸stby ◽  
Ba˚rd Nyhus ◽  
Dongbai Sun

Ductile crack growth plays an important role in the analyses of fracture behavior of structures. A strong geometry dependence of ductile crack growth resistance emerges under large scale yielding conditions. This geometry dependence is associated with different levels of crack tip constraint. However, an independent relationship between the fracture resistance and crack tip constraint has also been observed in experimental studies for selected specimen geometries. To verify these results, crack growth resistance curves for plane strain, mode I crack growth under large scale yielding have been computed using the complete Gurson model. Single edge notched bending (SENB) and tension (SENT) specimens with three different crack geometries have been selected for the numerical analyses. Specimen size effect on ductile crack growth behavior has also been studied. In addition, the SENT specimen appears as an alternative to conventional fracture specimens to characterize fracture toughness of circumferentially cracked pipes due to its similar geometry constraint ahead of the crack tip with that of cracks in pipes. 2D axisymmetric models have been carried out to investigate the effect of biaxial loading (axial tension combined with internal pressure) on the resistance curves for pipes with long internal circumferential cracks under large scale yielding conditions.


Sign in / Sign up

Export Citation Format

Share Document