zone parameters
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 135
Author(s):  
Evgeny Derishev ◽  
Tsvi Piran

Abstract The afterglow of GRB 190114C has been observed at 60–1200 s after the burst in the sub-TeV range by the MAGIC Cerenkov telescope. The simultaneous observations in the X-ray range, which is presumed to be of synchrotron origin, and in the sub-TeV range, where the emission is presumed to be inverse Compton, provide new stringent constraints on the conditions within the emitting regions and their evolution in time. While the additional data contain a lot of new information, it turns out that fitting both the X-ray and the TeV emission is much more complicated than what was originally anticipated. We find that optical flux measurements provide important complementary information that, in combination with TeV measurements, breaks degeneracy in the parameter space. We present here a numerical fit to the multiwavelength observed spectrum using a new code that calculates the single-zone synchrotron including self-Compton emission, taking into account the exact Klein–Nishina cross sections, as well as pair production via absorption of the high-energy photons inside the emitting zone and the emission from the resulting secondary pairs. We also present a revised set of single-zone parameters and a method for fitting the data to the observations. Our model for GRB 190114C that fits all the observations, from the optical data point to the sub-TeV range, suggests that it is in the fast-cooling regime. The inferred parameters for observations at two separate moments of time show significant deviations from some of the common expectations in afterglow modeling but are all consistent with the predictions of the pair-balance model.


2021 ◽  
Vol 843 (1) ◽  
pp. 012020
Author(s):  
I B Borisenko ◽  
M V Meznikova

Abstract The article highlights the results of research in strip farming. The method of minimum soil tillage, a resource-saving working body ROPA and a soil tillage tool for strip ripping OMPO-5.6, which are designed to perform fine soil tillage with strip deepening, are proposed. Adjustment of loosening depth from bit is achieved within the range of 0.25-0.4 m and is selected taking into account the crop grown in the farm. Availability of undercutter tine allows to regulate parameters of continuous ripping zone. Parameters of treated and untreated strips are regulated by location of undercutter paw. The design of the tool provides a smooth adjustment mechanism by which the width of the cultivated strip can be changed within 0.25-0.35 m. This makes it possible to use the implement for different tilled crops. The technological process carried out by this working body helps to reduce the wounding effect on the soil through a simple technical solution. Installation of side undercutting discs allows cultivating the soil within a given strip, and the process of cutting the soil in a blocked environment improves the quality of treatment.


Author(s):  
László Balázs

AbstractDuring the conventional petrophysical interpretation fixed (predefined) zone parameters are applied for every interpretation zone (depth intervals). Their inclusion in the inversion process requires the extension of a likelihood function for the whole zone. This allows to define the extremum problem for fitting the parameter set to the full interval petrophysical model of the layers crossed by the well, both for the parameters associated with the depth points (e.g. porosity, saturations, rock matrix composition etc.) and for the zone parameters (e.g. formation water resistivity, cementation factor etc.). In this picture the parameters form a complex coupled and correlated system. Even the local parameters associated with different depths are coupled through the zone parameter change. In this paper, the statistical properties of the coupled parameter system are studied which fitted by the Interval Maximum Likelihood (ILM) method. The estimated values of the parameters are coupled through the likelihood function and this determines the correlation between them.


Author(s):  
Zahra Sobhaninia ◽  
Hajar Danesh ◽  
Rahele Kafieh ◽  
Jayaram Jothi Balaji ◽  
Vasudevan Lakshminarayanan

2021 ◽  
Vol 12 (2) ◽  
pp. 725-743
Author(s):  
Fransje van Oorschot ◽  
Ruud J. van der Ent ◽  
Markus Hrachowitz ◽  
Andrea Alessandri

Abstract. The root zone storage capacity (Sr) is the maximum volume of water in the subsurface that can potentially be accessed by vegetation for transpiration. It influences the seasonality of transpiration as well as fast and slow runoff processes. Many studies have shown that Sr is heterogeneous as controlled by local climate conditions, which affect vegetation strategies in sizing their root system able to support plant growth and to prevent water shortages. Root zone parameterization in most land surface models does not account for this climate control on root development and is based on lookup tables that prescribe the same root zone parameters worldwide for each vegetation class. These lookup tables are obtained from measurements of rooting structure that are scarce and hardly representative of the ecosystem scale. The objective of this research is to quantify and evaluate the effects of a climate-controlled representation of Sr on the water fluxes modeled by the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model. Climate-controlled Sr is estimated here with the “memory method” (MM) in which Sr is derived from the vegetation's memory of past root zone water storage deficits. Sr,MM is estimated for 15 river catchments over Australia across three contrasting climate regions: tropical, temperate and Mediterranean. Suitable representations of Sr,MM are implemented in an improved version of HTESSEL (Moisture Depth – MD) by accordingly modifying the soil depths to obtain a model Sr,MD that matches Sr,MM in the 15 catchments. In the control version of HTESSEL (CTR), Sr,CTR is larger than Sr,MM in 14 out of 15 catchments. Furthermore, the variability among the individual catchments of Sr,MM (117–722 mm) is considerably larger than of Sr,CTR (491–725 mm). The climate-controlled representation of Sr in the MD version results in a significant and consistent improvement of the modeled monthly seasonal climatology (1975–2010) and interannual anomalies of river discharge compared with observations. However, the effects on biases in long-term annual mean river discharge are small and mixed. The modeled monthly seasonal climatology of the catchment discharge improved in MD compared to CTR: the correlation with observations increased significantly from 0.84 to 0.90 in tropical catchments, from 0.74 to 0.86 in temperate catchments and from 0.86 to 0.96 in Mediterranean catchments. Correspondingly, the correlations of the interannual discharge anomalies improve significantly in MD from 0.74 to 0.78 in tropical catchments, from 0.80 to 0.85 in temperate catchments and from 0.71 to 0.79 in Mediterranean catchments. The results indicate that the use of climate-controlled Sr,MM can significantly improve the timing of modeled discharge and, by extension, also evaporation fluxes in land surface models. On the other hand, the method has not been shown to significantly reduce long-term climatological model biases over the catchments considered for this study.


2021 ◽  
Vol 9 (3) ◽  
pp. 340 ◽  
Author(s):  
Christine Erbe ◽  
David Peel ◽  
Joshua N. Smith ◽  
Renee P. Schoeman

Underwater sound is modelled and mapped for purposes ranging from localised environmental impact assessments of individual offshore developments to large-scale marine spatial planning. As the area to be modelled increases, so does the computational effort. The effort is more easily handled if broken down into smaller regions that could be modelled separately and their results merged. The goal of our study was to split the Australian maritime Exclusive Economic Zone (EEZ) into a set of smaller acoustic zones, whereby each zone is characterised by a set of environmental parameters that vary more across than within zones. The environmental parameters chosen reflect the hydroacoustic (e.g., water column sound speed profile), geoacoustic (e.g., sound speeds and absorption coefficients for compressional and shear waves), and bathymetric (i.e., seafloor depth and slope) parameters that directly affect the way in which sound propagates. We present a multivariate Gaussian mixture model, modified to handle input vectors (sound speed profiles) of variable length, and fitted by an expectation-maximization algorithm, that clustered the environmental parameters into 20 maritime acoustic zones corresponding to 28 geographically separated locations. Mean zone parameters and shape files are available for download. The zones may be used to map, for example, underwater sound from commercial shipping within the entire Australian EEZ.


2021 ◽  
Author(s):  
Fransje van Oorschot ◽  
Ruud van der Ent ◽  
Andrea Alessandri ◽  
Markus Hrachowitz

<p>The root zone storage capacity (S<sub>r</sub> ) is the maximum volume of water in the subsurface that can potentially be accessed by vegetation for transpiration. It influences the seasonality of transpiration as well as fast and slow runoff processes. Many studies have shown that S<sub>r</sub> is heterogeneous as controlled by local climate conditions, which affect vegetation strategies in sizing their root system able to support plant growth and to prevent water shortages. Root zone parameterization in most land surface models does not account for this climate control on root development, being based on look-up tables that prescribe worldwide the same root zone parameters for each vegetation class. These look-up tables are obtained from measurements of rooting structure that are scarce and hardly representative of the ecosystem scale. The objective of this research was to quantify and evaluate the effects of a climate-controlled representation of S<sub>r</sub> on the  water fluxes modeled by the HTESSEL land surface model. Climate controlled S<sub>r</sub> was here estimated with the "memory method" (hereinafter MM) in which S<sub>r</sub> is derived from the vegetation's memory of past root zone water storage deficits. S<sub>r,MM</sub> was estimated for 15 river catchments over Australia across three contrasting climate regions: tropical, temperate and Mediterranean. Suitable representations of S<sub>r,MM</sub> were then implemented in HTESSEL (hereinafter MD) by accordingly modifying the soil depths to obtain a model S<sub>r,MD </sub>that matches S<sub>r,MM</sub> in the 15 catchments. In the control version of HTESSEL (hereinafter CTR), S<sub>r,CTR</sub> was larger than S<sub>r,MM</sub> in 14 out of 15 catchments. Furthermore, the variability among the individual catchments of S<sub>r,MM</sub> (117—722 mm) was considerably larger than of S<sub>r,CTR</sub> (491—725 mm). The HTESSEL MD version resulted in a significant and consistent improvement version of the modeled monthly seasonal climatology (1975--2010) and inter-annual anomalies of river discharge compared with observations. However, the effects on biases in long-term annual mean fluxes were small and mixed. The modeled monthly seasonal climatology of the catchment discharge improved in MD compared to CTR: the correlation with observations increased significantly from 0.84 to 0.90 in tropical catchments, from 0.74 to 0.86 in temperate catchments and from 0.86 to 0.96 in Mediterranean catchments. Correspondingly, the correlations of the inter-annual discharge anomalies improved significantly in MD from 0.74 to 0.78 in tropical catchments, from 0.80 to 0.85 in temperate catchments and from 0.71 to 0.79 in Mediterranean catchments. Based on these results, we believe that a global application of climate controlled root zone parameters has the potential to improve the timing of modeled water fluxes by land surface models, but a significant reduction of biases is not expected. </p>


2021 ◽  
Author(s):  
Fransje van Oorschot ◽  
Ruud J. van der Ent ◽  
Markus Hrachowitz ◽  
Andrea Alessandri

Abstract. The root zone storage capacity Sr is the maximum volume of water in the subsurface that can potentially be accessed by vegetation for transpiration. It influences the seasonality of transpiration as well as fast and slow runoff processes. Many studies have shown that Sr is heterogeneous as controlled by local climate conditions, which affect vegetation strategies in sizing their root system able to support plant growth and to prevent water shortages. Root zone parameterization in most land surface models does not account for this climate control on root development, being based on look-up tables that prescribe worldwide the same root zone parameters for each vegetation class. These look-up tables are obtained from measurements of rooting structure that are scarce and hardly representative of the ecosystem scale. The objective of this research is to quantify and evaluate the effects of a climate controlled representation of Sr on the water fluxes modeled by the HTESSEL land surface model. Climate controlled Sr is here estimated with the memory method (MM) in which Sr is derived from the vegetation's memory of past root zone water storage deficits. Sr,MM is estimated for 15 river catchments over Australia across three contrasting climate regions: tropical, temperate and Mediterranean. Suitable representations of Sr,MM are implemented in an improved version of HTESSEL (MD) by accordingly modifying the soil depths to obtain a model Sr-MD that matches Sr,MM in the 15 catchments. In the control version of HTESSEL (CTR), Sr,CTR is larger than Sr,MM in 14 out of 15 catchments. Furthermore, the variability among the individual catchments of Sr,MM (117–722 mm) is considerably larger than of Sr,CTR (491–725 mm) The climate controlled representation of Sr in the MD version results in a significant and consistent improvement of the modeled monthly seasonal climatology (1975–2010) and inter-annual anomalies of river discharge compared with observations. However, the effects on biases in long-term annual mean fluxes are small and mixed. The modeled monthly seasonal climatology of the catchment discharge improved in MD compared to CTR: the correlation with observations increased significantly from 0.84 to 0.90 in tropical catchments, from 0.74 to 0.86 in temperate catchments and from 0.86 to 0.96 in Mediterranean catchments. Correspondingly, the correlations of the inter-annual discharge anomalies improve significantly in MD from 0.74 to 0.78 in tropical catchments, from 0.80 to 0.85 in temperate catchments and from 0.71 to 0.79 in Mediterranean catchments. The results indicate that the use of climate controlled Sr,MM can significantly improve the timing of modeled discharge and, by extension, also evaporation fluxes in land surface models. On the other hand, the method has not shown to significantly reduce long-term climatological model biases over the catchments considered for this study.


Author(s):  
S. R. Rakhmanov

Technology of seamless pipes production by extrusion enables to deform pipe workpieces made of low-plastic materials. However, low durability of the working instrument restricts the area of the technology application. The purpose of the work was to specify optimal parameters of technological processes of pipes extrusion. Minimization of energy and force parameters of the deformation zone and an increase of once-only metal deformation were accepted as criteria. They will enable to increase the presses productivity, increase durability of working instrument and accuracy of pipes geometric dimensions. A mathematical model of deformation zone and stressed state of pipe workpiece were elaborated. Influence of the die generatrix calibration and deformation zone parameters on the character of energy and force parameters change revealed. Dependence of energy and force parameters on the die calibration and geometric parameters of deformation zone for the press 50 MH was established. The results of mathematical simulation of pipes extrusion showed that along the whole deformation zone length, increase of metal flow speed results in an increase of tangential and normal stresses on the forming mandrel and calibrated die. The task of parametric optimization of die profile (calibration) was accomplished in interpretation of base variation Euler’s task for a determined functional of pipes extrusion. It was established that while the extrusion speed is increasing, the energy and force parameters of the deformation zone are getting pronounced dynamic character. At that, by optimization of die calibration, an increase of the extrusion press 50MH working instruments durability was reached, as follows: dies – by two times, mandrels – by 4 times, container bushes – by 40% and press-washers – by 2 times.


Sign in / Sign up

Export Citation Format

Share Document