Appropriate intensity measures for probabilistic seismic demand estimation of steel diagrid systems

2021 ◽  
Vol 249 ◽  
pp. 113260
Author(s):  
Mahdi Heshmati ◽  
Vahid Jahangiri
2011 ◽  
Vol 38 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo

This is the second of two companion papers on improved intensity measures of strong seismic ground motions for use in probabilistic seismic demand analysis of reinforced concrete frame buildings. The first paper discusses the development of improved intensity measures. This paper describes the application of the developed intensity measures in probabilistic seismic demand analysis. The application is illustrated on the three reinforced concrete frame buildings (4, 10, and 16-storey high) that were used in the first paper. This involved computations of the seismic responses of the structures and the seismic hazard using the improved intensity measures. The response and the hazard results were then combined by means of probabilistic seismic demand analysis to determine the mean annual frequencies of exceeding specified response levels due to future earthquakes (i.e., the probabilistic seismic demands). For the purpose of comparison, probabilistic seismic demand analyses were also conducted by employing the spectral acceleration at the fundamental structural periods (Sa(T1)) as an intensity measure, which is currently the most used in practice. It was found that the use of the improved intensity measures results in significantly lower seismic demands relative to those corresponding to the intensity measure represented by Sa(T1), especially for long period structures.


2012 ◽  
Vol 41 (3) ◽  
pp. 391-409 ◽  
Author(s):  
Abdollah Shafieezadeh ◽  
Karthik Ramanathan ◽  
Jamie E. Padgett ◽  
Reginald DesRoches

2011 ◽  
Vol 38 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo

This is the first of two companion papers on improved intensity measures of strong seismic ground motions for use in probabilistic seismic demand analysis. It describes the formulation and the development of new intensity measures. The second paper illustrates the application of the developed intensity measures in probabilistic seismic demand analysis. The development of the intensity measures was based on investigations of the seismic responses of three reinforced concrete frame buildings (4, 10, and 16-storey high) designed for Vancouver. The buildings were subjected to a selected set of seismic motions scaled to different intensity levels. Maximum interstorey drifts obtained from nonlinear dynamic analyses were used as response parameters. Based on the results from the analyses, two intensity measures are proposed: one for short- and intermediate-period buildings, and another one for long-period buildings. The proposed intensity measures are superior compared to that represented by the spectral acceleration at the fundamental building period (Sa(T1)), which is currently the most widely used intensity measure in probabilistic seismic demand analysis.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5163
Author(s):  
Duy-Duan Nguyen ◽  
Tae-Hyung Lee ◽  
Van-Tien Phan

The purpose of this study is to evaluate the optimal earthquake intensity measures (IMs) for probabilistic seismic demand models (PSDMs) of the base-isolated nuclear power plant (NPP) structures. The numerical model of NPP structures is developed using a lumped-mass stick model, in which a bilinear model is employed to simulate the force-displacement relations of base isolators. In this study, 20 different IMs are considered and 90 ground motion records are used to perform time-history analyses. The seismic engineering demand parameters (EDPs) are monitored in terms of maximum floor displacement (MFD), the maximum floor acceleration (MFA) of the structures, and maximum isolator displacement (MID). As a result, a set of PSDMs of the base-isolated structure is developed based on three EDPs (i.e., MFD, MFA, and MID) associated with 20 IMs. Four statistical parameters including the coefficient of determination, efficiency (i.e., standard deviation), practicality, and proficiency are then calculated to evaluate optimal IMs for seismic performances of the isolated NPP structures. The results reveal that the optimal IMs for PSDMs with respect to MFD and MID are velocity spectrum intensity, Housner intensity, peak ground velocity, and spectral velocity at the fundamental period. Meanwhile, peak ground acceleration, acceleration spectrum intensity, A95, effective peak acceleration, and sustained maximum acceleration are efficient IMs for PSDMs with respect to MFA of the base-isolated structures. On the other hand, cumulative absolute velocity is not recommended for determining the exceedance of the operating basis earthquake of base-isolated NPP structures.


Sign in / Sign up

Export Citation Format

Share Document