Experimental study on the seismic behavior of high-performance cold-formed steel plate shear walls

2022 ◽  
Vol 251 ◽  
pp. 113552
Author(s):  
Yu Shi ◽  
Zeqiao Luo ◽  
Yunpeng Xu ◽  
Yuxuan Zou ◽  
Lei Xu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ningning Feng ◽  
Changsheng Wu

Two specimens of nonductile reinforced concrete (RC) frame (ND-1) and nonductile RC frame retrofitted by corrugated steel plate shear walls slotted with columns (ND-2) are established by finite element. These specimens have same dimensions and steel skeletons. Finite element models had been verified by the existing experimental results. The hysteresis curves, skeleton curves, ductility, and stiffness curves of Specimen ND-1 and Specimen ND-2 are compared. The results show that the reinforcement effect is significant. Twenty-four models are built to study the seismic behavior on different influence parameters. The parameters are slit width, thickness of corrugated steel plate shear walls, concrete strength of nonductile RC frame, and boundary conditions of corrugated steel plate shear walls at slotted parts. The results indicate that the strength is declined with the increase of slit width. With the increase of thickness and concrete strength, the strength and stiffness are enhanced. The strength is larger with the boundary than without. Slit width and thickness have an important impact on the stiffness. Concrete strength and boundary conditions have little impact on stiffness. The strengthened nonductile RC frames have enough ductility.


Sign in / Sign up

Export Citation Format

Share Document