uniform spacing
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Mohammad Sadik Khan ◽  
Masoud Nobahar ◽  
John Ivoke

Geographically, at the center of Mississippi is a concentration of High Plastic Yazoo Clay Soil (HPYCS). Shallow landslides frequently occur in embankments constructed with HPYCS caused by rainfall-induced saturation of the embankment slope. The traditional methods are becoming expensive to repair the shallow slope failure. The use of Recycled Plastic Pins (RPPs) to stabilize shallow slope failures offers a significant cost and construction benefit and can be a useful remedial measure for these types of failures. The current study investigates the effectiveness of RPP in slopes constructed with HPYCS, using the Finite Element Method (FEM). The FEM analysis was conducted with the PLAXIS 2D software package. Three uniform and varied RPP spacings were investigated to reinforce 2–4H:1V slopes. Reinforced slope stability analyses were performed to investigate the applicability of RPP in HPYCS. The FEM analysis results indicated that RPP provides shear resistance for the sloping embankment constructed of HPYCS. Uniform spacing of RPP provides sufficient resistance that increases the Factor of Safety (FS) to 1.68 in 2H:1V slopes with deformation of RPP less than 15 mm. The uniform spacing and varied spacing combination of RPP increase the FS to 2.0 with the deformation of RPP less 7 mm.


2021 ◽  
Author(s):  
Sandeep Kumar Sharma ◽  
Ravinder Kumar Duvedi ◽  
Sanjeev Bedi ◽  
Stephen Mann

Abstract This paper presents an extension of multi point machining technique, called the Drop Spin and Tilt (DST) method, that spins the tool on two axes, allowing for the generation of multiple contact points at varying distances around the first point of contact. The multiple DST second points of contact were used to manually generate a toolpath with uniform spacing between the two points of contact. The original DST method used a symbolic algebra package to position the tool on a bi-quadratic surface; our extension is a numer- ical solution that allows positioning a toroidal tool on a tensor product Bezier surface. Further, we investigate the spread of possible second points of contact as the tool is spun around these two axes, demonstrating the feasability of using the method to control the machining strip width.


2020 ◽  
Vol 14 (5) ◽  
pp. 306-311
Author(s):  
Mohamad Younes ◽  
Mihai Telescu ◽  
Stéphane Azou ◽  
Pascal Morel ◽  
Noël Tanguy

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4753
Author(s):  
Md Nazim Uddin ◽  
Sangjo Choi

A corporate feeding antenna array with parasitic patches has been investigated previously for millimeter-wave applications due to its high gain and wide bandwidth. However, the parasitic patch integration in the uniformly powered and spaced patch antenna array led to a high sidelobe level (SLL). In this study, we designed a non-uniformly powered and spaced corporate feeding network to feed a 12-element parasitic patch-integrated microstrip antenna array for SLL reduction at 28 GHz in the millimeter-wave band. In the power divider, we arranged two one-to-six unequally feeding power dividers from the opposite side to feed 12 antenna elements with non-uniform excitation, and effectively controlled the spacing between antenna elements. The two opposite input ports from the power divider were fed 180° out-of-phase for good isolation between the adjacent antenna elements. To verify the SLL reduction effect from the non-uniform spacing in the array, we designed two non-uniformly powered patch antenna arrays with uniform and non-uniform spacing. In the measurement, the non-uniformly powered and spaced patch antenna array demonstrated a nearly 16.56 dBi boresight gain and −17.27 dB SLL, which is nearly 2 dB lower than the uniformly spaced counterpart. Finally, we expect that the non-uniformly powered and spaced high gain patch antenna array with a low SLL will be suitable for millimeter-wave communication applications.


In this paper, a tuning of several Yagi-Uda antennas in the frequency range of 300 MHz and 2.4 GHz band for uniform and non-uniform spacing between directors and maintaining this spacing between the elements to enhance the gain is discussed. A Yagi-Uda antenna with closely spaced directors is proposed for achieving appreciable gain as reducing the spacing results in physically compact size. Further, we seek other techniques such as folded dipole Yagi-Uda antenna and increasing the radius of reflector. The computer simulation was performed and results were compared with traditional Yagi-Uda antenna with the aim at tuning it for Wi-Fi application


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2262 ◽  
Author(s):  
Marco A. Panduro ◽  
Alberto Reyna ◽  
David H. Covarrubias

This paper presents the design of aperiodic concentric ring arrays for ultra-wide bandwidths (UW-ACRA). This design of ultra-wideband arrays considers the synthesis of concentric rings in two cases: 1) non-uniform spacing between rings with non-uniform spacing between antenna elements of the same ring (UW-ACRAelements); and 2) non-uniform spacing between rings assuming that spacing between antenna elements of the same ring to be equal (UW-ACRArings). This is in order to eliminate the occurrence of grating lobes and generating array structures with useful ultra-wideband properties. The synthesis process is carried out by the well-known method of differential evolution (DE). Wireless sensor networks can take advantage of these properties to achieve less data traffic, efficient delivery of information and better energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document