The impact of climate change on the European energy system

Energy Policy ◽  
2013 ◽  
Vol 60 ◽  
pp. 406-417 ◽  
Author(s):  
Paul Dowling
2021 ◽  
Author(s):  
Caroline Acton

Abstract Ocean renewable energy has a central role to play in decarbonizing the global energy system. The emergence of new technologies such as floating wind farms will significantly increase offshore wind deployment by providing access to large areas of the seabed that are not suitable for fixed bottom turbines. Operations and Maintenance (O&M) is estimated to contribute 50% to an offshore wind farm’s total operational cost. The ability to improve the efficiency of O&M activities will enable offshore wind to compete with traditional fossil-based and onshore-renewable generation methods. To achieve this, an accurate characterization of the metocean environment is a mechanism of reducing delays and costs across the entire project lifecycle. One of the most significant costs associated with offshore operations is accessing a site with vessels. Site access is determined using vessels constraints in the maximum allowable meteorological and ocean (metocean) conditions and is defined as weather window analysis. However, industry guidelines and standards rely on historical data and do not consider the impact of climate change on the marine climate and the associated vessel operability. This requires the use of climate projection data. The opportunity to use an existing industry metric such as weather windows will tailor the climate projection data to the end-users needs. This paper’s findings suggest that climate change will alter the metocean environment and vessel operability for the case study location investigated. The findings demonstrate the value of site-specific assessment of the future wave climate to inform operational decision making. The main conclusion is that longer-term planning will require the offshore wind sector to consider the impact of climate change on O&M activities.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document