Assessment of the Impact of Climate Change on the Energy Efficiency of Climate Control Systems of Buildings

Author(s):  
O.D. SAMARIN ◽  
◽  
K.I. LUSHIN ◽  
2021 ◽  
Vol 228 ◽  
pp. 02005
Author(s):  
Lujian Bai ◽  
Bing Song

Climate has a key impact on building energy efficiency. The impact of climate change on heating and cooling degree-days of China during the past 60 years was studied in this paper. The meteorological data of 613 cities published by National Climate Center of China was applied in this research. The study results showed that the impact of climate change on the spatial distribution characteristics of heating and cooling degree-days is obvious. The area with HDD18 °C over 2000 d·°C has dramatic shrunk during recent 30 years compared with the period from 1964 to 1983, while the area with CDD26 °C over 90 d·°C has expanded during recent 30 years. The impact of climate change on the HDD18 °C and CDD26 °C of each city is inhomogeneity. The decrease of HDD18 °C mainly occurred in the north and northwest of China, and the increase of CDD26 mainly occurred in the southeast of China. The outcomes of this paper may provide a theoretical basis for building energy efficiency design in future.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document