Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials

2021 ◽  
Vol 34 ◽  
pp. 716-734
Author(s):  
Shuoqing Zhao ◽  
Ziqi Guo ◽  
Kang Yan ◽  
Shuwei Wan ◽  
Fengrong He ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2013 ◽  
Vol 1 (44) ◽  
pp. 13742 ◽  
Author(s):  
Jingang Yang ◽  
Xiaolong Zhang ◽  
Xiaopeng Han ◽  
Fangyi Cheng ◽  
Zhanliang Tao ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinghui Ren ◽  
Zhenyu Wang ◽  
Peng Xu ◽  
Cong Wang ◽  
Fei Gao ◽  
...  

AbstractHigh-energy–density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g−1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g−1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g−1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.


Sign in / Sign up

Export Citation Format

Share Document