scholarly journals Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China

2020 ◽  
Vol 144 ◽  
pp. 106079
Author(s):  
Hongxing Jiang ◽  
Jun Li ◽  
Duohong Chen ◽  
Jiao Tang ◽  
Zhineng Cheng ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Weiqiang Yang ◽  
Qingqing Yu ◽  
Chenglei Pei ◽  
Chenghao Liao ◽  
Jianjun Liu ◽  
...  

Volatile organic compounds (VOCs) are important precursors of photochemical ozone and secondary organic aerosol (SOA). Here, hourly variations of ambient VOCs were monitored with an online system at an urban site (Panyu, PY) in the Pearl River Delta region during August–September of 2020 in order to identify reactive VOC species and major sources of VOCs, OH loss rate (LOH), SOA formation potential (SOAFP), and corresponding emission source regions. The average concentration of VOCs at PY was 31.80 ± 20.82 ppbv during the campaign. The C2–C5 alkanes, aromatics, and ≥C6 alkanes contributed for the majority of VOC, alkenes and aromatics showed the highest contribution to LOH and SOAFP. Further, m/p-xylene, propene, and toluene were found to be the top three most reactive anthropogenic VOC species, with respective contributions of 11.6%, 6.1%, and 5.8% to total LOH. Toluene, m/p-xylene, and o-xylene constituted a large fraction of calculated SOAFP. Seven major sources were identified by using positive matrix factorization model. Vehicle exhaust made the most significant contribution to VOCs, followed by liquefied petroleum gas and combustion sources. However, industrial-related sources (including industrial solvent use and industrial process emission) had the largest contribution to LOH and SOAFP. By combining source contribution with wind direction and wind speed, the regions of different sources were further identified. Based on high-resolution observation data during ozone pollution, this study clearly exhibits key reactive VOC species and the major emission regions of different VOC sources, and thus benefits the accurate emission control of VOCs in the near future.


2019 ◽  
Vol 19 (18) ◽  
pp. 11669-11685 ◽  
Author(s):  
Zhujie Li ◽  
Haobo Tan ◽  
Jun Zheng ◽  
Li Liu ◽  
Yiming Qin ◽  
...  

Abstract. Brown carbon (BrC) is a special type of organic aerosol (OA), capable of absorbing solar radiation from near-ultraviolet (UV) to visible wavelengths, which may lead to an increased aerosol radiative effect in the atmosphere. While high concentrations of OAs have been observed in the Pearl River Delta (PRD) region of China, the optical properties and corresponding radiative forcing of BrC in the PRD are still not well understood. In this work, we conducted a set of comprehensive measurements of atmospheric particulate matter from 29 November 2014 to 2 January 2015 to investigate aerosol compositions, optical properties, source origins, and radiative forcing effects at a suburban station in Guangzhou. The particle absorption Ångström exponent (AAE) was deduced and utilized to distinguish light absorption by BrC from that by black carbon (BC). The results showed that the average absorption contributions of BrC were 34.1±8.0 % at 370 nm, 23.7±7.3 % at 470 nm, 16.0±6.7 % at 520 nm, 13.0±5.4 % at 590 nm, and 8.7±4.3 % at 660 nm. A sensitivity analysis of the evaluation of the absorption Ångström exponent of BC (AAEBC) was conducted based on the Mie theory calculation assuming that the BC-containing aerosol was mixed with the core–shell and external configurations. The corresponding uncertainty in AAEBC was acquired. We found that variations in the imaginary refractive index (RI) of the BC core can significantly affect the estimation of AAEBC. However, AAEBC was relatively less sensitive to the real part of the RI of the BC core and was least sensitive to the real part of the RI of the non-light-absorbing shell. BrC absorption was closely related to aerosol potassium cation content (K+), a common tracer of biomass burning emissions, which was most likely associated with straw burning in the rural area of the western PRD. Diurnal variation in BrC absorption revealed that primary organic aerosols had a larger BrC absorption capacity than secondary organic aerosols (SOAs). Radiative transfer simulations showed that BrC absorption may cause 2.3±1.8 W m−2 radiative forcing at the top of the atmosphere (TOA) and contribute to 15.8±4.4 % of the aerosol warming effect. A chart was constructed to conveniently assess the BrC radiative forcing efficiency in the studied area with reference to certain aerosol single-scattering albedo (SSA) and BrC absorption contributions at various wavelengths. Evidently, the BrC radiative forcing efficiency was higher at shorter wavelengths.


Sign in / Sign up

Export Citation Format

Share Document