scholarly journals Supplementary material to "Emission inventory of semi-volatile and intermediate volatility organic compounds and theireffectson SOA over the Pearl River Delta region"

Author(s):  
Liqing Wu ◽  
Xuemei Wang ◽  
Sihua Lu ◽  
Min Shao ◽  
Zhenhao Ling
Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Weiqiang Yang ◽  
Qingqing Yu ◽  
Chenglei Pei ◽  
Chenghao Liao ◽  
Jianjun Liu ◽  
...  

Volatile organic compounds (VOCs) are important precursors of photochemical ozone and secondary organic aerosol (SOA). Here, hourly variations of ambient VOCs were monitored with an online system at an urban site (Panyu, PY) in the Pearl River Delta region during August–September of 2020 in order to identify reactive VOC species and major sources of VOCs, OH loss rate (LOH), SOA formation potential (SOAFP), and corresponding emission source regions. The average concentration of VOCs at PY was 31.80 ± 20.82 ppbv during the campaign. The C2–C5 alkanes, aromatics, and ≥C6 alkanes contributed for the majority of VOC, alkenes and aromatics showed the highest contribution to LOH and SOAFP. Further, m/p-xylene, propene, and toluene were found to be the top three most reactive anthropogenic VOC species, with respective contributions of 11.6%, 6.1%, and 5.8% to total LOH. Toluene, m/p-xylene, and o-xylene constituted a large fraction of calculated SOAFP. Seven major sources were identified by using positive matrix factorization model. Vehicle exhaust made the most significant contribution to VOCs, followed by liquefied petroleum gas and combustion sources. However, industrial-related sources (including industrial solvent use and industrial process emission) had the largest contribution to LOH and SOAFP. By combining source contribution with wind direction and wind speed, the regions of different sources were further identified. Based on high-resolution observation data during ozone pollution, this study clearly exhibits key reactive VOC species and the major emission regions of different VOC sources, and thus benefits the accurate emission control of VOCs in the near future.


Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102164
Author(s):  
Zheng-An Wei ◽  
Haibing Shao ◽  
Ling Tang ◽  
Bin Deng ◽  
Hailong Li ◽  
...  

2018 ◽  
Vol 180 ◽  
pp. 69-78 ◽  
Author(s):  
Cheuk Hei Marcus Tong ◽  
Steve Hung Lam Yim ◽  
Daniel Rothenberg ◽  
Chien Wang ◽  
Chuan-Yao Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document