Surface noble gas recycling to the terrestrial mantle

2004 ◽  
Vol 228 (1-2) ◽  
pp. 49-63 ◽  
Author(s):  
Philippe Sarda
Keyword(s):  
2003 ◽  
Vol 216 (4) ◽  
pp. 635-643 ◽  
Author(s):  
Manuel Moreira ◽  
Jerzy Blusztajn ◽  
Joshua Curtice ◽  
Stan Hart ◽  
Henry Dick ◽  
...  

1996 ◽  
Vol 3 (6) ◽  
pp. 2286-2292 ◽  
Author(s):  
Jeffrey N. Brooks

2015 ◽  
Vol 159 ◽  
pp. 1-15 ◽  
Author(s):  
Colin R.M. Jackson ◽  
Stephen W. Parman ◽  
Simon P. Kelley ◽  
Reid F. Cooper

1989 ◽  
Vol 14 (5) ◽  
pp. 467-604 ◽  
Author(s):  
A.Z. Devdariani ◽  
A.L. Zagrebin ◽  
K.B. Blagoev
Keyword(s):  

2020 ◽  
Vol 39 (1) ◽  
pp. 447-456
Author(s):  
Zhenlong An ◽  
Jingbin Wang ◽  
Yanjun Liu ◽  
Yingli Liu ◽  
Xuefeng She ◽  
...  

AbstractThe top gas recycling-oxygen blast furnace (TGR-OBF) is a reasonable method used to reduce both coke rate and energy consumption in the steel industry. An important feature of this process is shaft gas injection. This article presents an experimental study on the gas–solid flow characteristics in a TGR-OBF using a two-dimensional cold model. The experimental conditions and parameters were determined using a series of similarity criteria. The results showed that the whole flow area in the TGR-OBF can be divided into four distinct flow zones, namely, the stagnant zone, the plug flow zone in the upper part of the shaft, the converging flow zone and the quasi-stagnant flow zone, which is similar to that in a traditional blast furnace. Then the effects of batch weight and the ratio (X) of the shaft injected gas flow rate to the total gas flow rate on solid flow behaviour were investigated in detail. With the increase in batch weight, the shape of the stagnant zone tends to be shorter and thicker. Furthermore, with the increase in X value from 0 to 1, the stagnant zone gradually becomes thinner and higher. The results obtained from the experiments provide fundamental data and a validation for the discrete element method–computational fluid dynamics-coupled mathematical model for TGR-OBFs for future studies.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 279
Author(s):  
Chuantong Zhang ◽  
Bingkui Miao ◽  
Huaiyu He ◽  
Hongyi Chen ◽  
P. M. Ranjith ◽  
...  

Howardite-Eucrite-Diogenite (HED) meteorite clan is a potential group of planetary materials which provides significant clues to understand the formation and evolution of the solar system. Grove Mountains (GRV) 13001 is a new member of HED meteorite, recovered from the Grove Mountains of Antarctica by the Chinese National Antarctic Research Expedition. This research work presents a comprehensive study of the petrology and mineralogy, chemical composition, noble gas isotopes, cosmic-ray exposure (CRE) age and nominal gas retention age for the meteorite GRV 13001. The output data indicate that GRV 13001 is a monomict basaltic eucrite with typical ophitic/subophitic texture, and it consists mainly of low-Ca pyroxene and plagioclase with normal eucritic chemical compositions. The noble gas based CRE age of the GRV 13001 is approximately 29.9 ± 3.0 Ma, which deviates from the major impact events or periods on the HED parent body. Additionally, the U,Th-4He and 40K-40Ar gas retention ages of this meteorite are ~2.5 to 4.0 Ga and ~3.6 to 4.1 Ga, respectively. Based on the noble gases isotopes and the corresponding ages, GRV 13001 may have experienced intense impact processes during brecciation, and weak thermal event after the ejection event at approximately 30 Ma.


Sign in / Sign up

Export Citation Format

Share Document