High Temperature Materials and Processes
Latest Publications


TOTAL DOCUMENTS

1963
(FIVE YEARS 216)

H-INDEX

20
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2191-0324, 0334-6455

2021 ◽  
Vol 40 (1) ◽  
pp. 300-309
Author(s):  
Sheng Huang ◽  
Changrong Li ◽  
Zhiying Li ◽  
Zeyun Zeng ◽  
Yongqiang Zhai ◽  
...  

Abstract HRB500E seismic steel bars are mainly used in high-rise buildings near the seismic zone. The influence of different niobium contents (0–0.023%) on the microstructure and mechanical properties of HRB500E seismic reinforcement was studied. Results showed that the grain size of ferrite was between 3.6 and 8.3 μm when only V was added. Meanwhile, as the niobium content increases, the ferrite particles are further refined. After adding niobium, the grain contribution increased by 9%. The addition of niobium significantly refined the grain size of HRB500E seismic reinforcement. The second-phase nano-elliptic precipitate is NbC. The precipitated phase is dispersed on the grain boundary and the matrix, and the dislocation density on the matrix promotes the precipitation of NbC particles along the dislocation line. The second-phase precipitation of niobium can form an effective pinning effect and then refine the pearlite spacing. The microhardness and the tensile strength also significantly improved. The yield strength increased from 509 to 570 MPa.


2021 ◽  
Vol 40 (1) ◽  
pp. 397-409
Author(s):  
Ziliu Xiong ◽  
Zhangguo Lin ◽  
Jianjun Qi ◽  
Li Sun ◽  
Guangxin Wu ◽  
...  

Abstract High-temperature oxidation resistance, hot formability, element distribution, and microstructure of Al-10% Si-(0.5–3.0%)Cu coating were investigated by means of glow discharge spectroscopy, optical microscope, scanning electron microscope, and energy-dispersive spectroscopy. Results show that the addition of Cu can increase high-temperature oxidation resistance above 950°C and improve hot formability so that no crack spreads into substrate steel as hot forming at 33.3% strain. Oxidation film structure is continual and compacting, and Si highly concentrates in the surface layer. The distribution of Cu has skin effect with peaking content 8.2% in the surface layer. After hot stamping, Al and Si diffuse into substrate steel, and Cu diffuses from inner to outer coating. Al–Si–Cu coating has smoother surface, straighter diffusion layer, and finer metal compound than Al–Si coating. Surface and diffusion layers are identified as aluminum oxide, Si-rich, and Cu phase and Al7SiFe2, Al3Fe, and CuAl3, respectively. Al-rich phase and the metal compound are composed of α-Al dissolving Fe, Si, and Cu and Al–Si matrix, Cu3Al, respectively.


2021 ◽  
Vol 40 (1) ◽  
pp. 446-460
Author(s):  
Shigeru Ikeda

Abstract Copper kesterite Cu2ZnSnS4 is a promising photoabsorber material for solar cells and photoelectrochemical (PEC) water splitting. In this article, we will first review the crystallographic/energetic structures of Cu2ZnSnS4 in view of its applications to sunlight conversion devices. Then, historical progress in photovoltaic properties of Cu2ZnSnS4-based solar cells is introduced. Finally, studies on PEC H2 evolution over Cu2ZnSnS4-based photocathodes are reviewed in detail. For realizing efficient PEC H2 evolution, surface modifications with an n-type buffer layer (such as CdS) and a catalytic site (such as Pt nanoparticles) were found to be indispensable. Since these surface-modified photocathodes had poor resistances under an operating bias due to the occurrence of oxidative photocorrosion of the CdS layer and elimination of the Pt catalysts, coverage with a protection layer was required to improve the long-term durability. Moreover, partial or complete substitution of the constituent cations with some cations was proved to be effective for improving PEC properties. Although recent studies showed a rapid increase in PEC properties, there is room for further development of PEC properties by using effective combinations among surface protection(s), defect engineering(s), and band engineering(s).


2021 ◽  
Vol 40 (1) ◽  
pp. 421-427
Author(s):  
Theresa Coetsee ◽  
Frederik De Bruin

Abstract In submerged arc welding (SAW) of chromium (Cr) containing steels, Cr is usually added to the weld metal from the weld wire, and not from the welding flux. Manufacturing of weld wires of specific compositions is expensive and time consuming and cannot closely match all the desired alloy compositions. Therefore, the weld wire chemistry is usually over matched to the base plate composition. Better matching between the weld metal and base plate is possible if the weld metal incorporates Cr from Cr containing metal powder, instead of sourcing Cr from weld wire of limited Cr content. Because Cr is easily oxidised, the oxygen partial pressure in SAW must be controlled. This work illustrates the control of the oxygen potential at the molten flux-weld pool interface by using aluminium (Al) powder addition. The controlled oxygen potential at the molten flux-weld pool interface ensures increased Cr powder transfer into the weld pool, without interfering with oxygen transfer from the plasma arc to the weld pool. The objective of this work is to use targeted powder additions to better control Cr reactions in SAW to improve Cr metal transfer to the weld metal and maintain an acceptable level of oxygen in the weld metal.


2021 ◽  
Vol 40 (1) ◽  
pp. 12-22
Author(s):  
Yuetao Zhang ◽  
Tingbi Yuan ◽  
Yawei Shao ◽  
Xiao Wang

Abstract This article reports the microstructure evolution in TP347HFG austenitic steel during the aging process. The experiments were carried out at 700°C with different aging time from 500 to 3,650 h. The metallographic results show that the coherent twin and incoherent twin are existed in the original TP347HFG grains, while they gradually vanished with the increase of the aging time. After aging for 500 h, a lot of fine, dispersed particles precipitated from the matrix, but they disappeared after aging for 1,500 h. When the aging time extend to 3,650 h, the precipitates appeared apparently coarse in TP347HFG steel, which include the M23C6 and σ phase; besides, the micro-hardness of TP347HFG also changes during the aging, which was closely related to the effect of dispersion strengthening and solution strengthening. The results of the nonlinear ultrasonic measurement reveal that the β′ of TP347HFG steel was also changed with the aging time. It first increased at 0–500 h, then reduced later, and increased finally at 1,500–3,650 h. The variation of β′ in TP347HFG was influenced by a combined effect of the twin microstructure and the precipitate phase, which indicate that the nonlinear ultrasonic technique can be utilized to characterize the microstructure evolution in TP347HFG.


2021 ◽  
Vol 40 (1) ◽  
pp. 171-177
Author(s):  
Yue Wang ◽  
Ben Fu Long ◽  
Chun Yu Liu ◽  
Gao An Lin

Abstract Herein, the evolution of reduction process of ultrafine tungsten powder in industrial conditions was investigated. The transition process of morphology and composition was examined via SEM, XRD, and calcination experiments. The results show that the reduction sequence of WO2.9 was WO2.9 → WO2.72 → WO2 → W on the surface, but WO2.9 → WO2 → W inside the oxide particles. With the aid of chemical vapor transport of WO x (OH) y , surface morphology transformed into rod-like, star-shaped cracking, floret, irregularly fibrous structure, and finally, spherical tungsten particles.


2021 ◽  
Vol 40 (1) ◽  
pp. 151-170
Author(s):  
Weijing Yao ◽  
Happiness Lyimo ◽  
Jianyong Pang

Abstract To study the active heat insulation roadways of high-temperature mines considering thermal insulation and injection, a high-temperature −965 m return air roadway of Zhujidong Coal Mine (Anhui Province, China) is selected as a prototype. The ANSYS numerical simulation method is used for the sensitivity analysis of heat insulation grouting layers with different thermal conductivities and zone ranges and heat insulation spray layers with different thermal conductivities and thicknesses; thus, their effects on the heat-adjusting zone radius, surrounding rock temperature field, and wall temperature are studied. The results show that the tunneling head temperature of the Zhujidong Mine is >27°C all year round, consequently causing serious heat damage. The heat insulation circle formed by thermal insulation spraying and grouting can effectively alleviate the disturbance of roadway airflow to the surrounding rock temperature field, thereby significantly reducing the heat-adjusting zone radius and wall temperature. The decrease in the thermal conductivities of the grouting and spray layers, expansion of the grouting layer zone, and increase in the spray layer thickness help effectively reduce the heat-adjusting zone radius and wall temperature. This trend decreases significantly with the ventilation time. A sensitivity analysis shows that the use of spraying and grouting materials of low thermal conductivity for thermal insulation is a primary factor in determining the temperature field distribution, while the range of the grouting layer zone and the spray layer thickness are secondary factors. The influence of the increased surrounding rock radial depth and ventilation time is negligible. Thus, the application of thermal insulation spraying and grouting is essential for the thermal environment control of mine roadways. Furthermore, the research and development of new spraying and grouting materials with good thermal insulation capabilities should be considered.


2021 ◽  
Vol 40 (1) ◽  
pp. 32-39
Author(s):  
Mengxu Zhang ◽  
Jianli Li ◽  
Zhengliang Xue ◽  
Renlin Zhu ◽  
Qiqiang Mou ◽  
...  

Abstract The volume stability caused by the hydration of f-CaO is one of the main obstacles to the comprehensive utilization of steel-making slag. In view of the f-CaO produced by incomplete dissolution of lime, it is necessary to strengthen the dissolution behavior of lime in the converter process. The reactivity of lime determines the dissolution efficiency and is closely related to its microstructure. The experimental results show that the reactivity and porosity of quick lime decrease and the average diameter of pore increases with an increase in temperature. The CaO crystals gradually grow up under the action of grain boundary migration. When the temperature increased from 1,350 to 1,600°C, the lime reactivity decreased from 237.60 to 40.60 mL, the porosity decreased from 30.55 to 15.91%, the average pore diameter increased from 159.10 to 1471.80 nm, and the average CaO particle size increased from 0.33 to 9.61 µm. The results indicate that reactivity is decreased because of the deformation and growth of CaO crystals and the decrease in porosity in reactive lime. This will cause an obstacle to the dissolution of lime and is not conducive to the control of f-CaO in slag.


2021 ◽  
Vol 40 (1) ◽  
pp. 53-65
Author(s):  
Li Sun ◽  
Weiping Yan

Abstract More attention has been paid to the exfoliation of oxide scale on high-temperature heating surface of utility boiler. The oxidation mechanism of HCM12A steel in supercritical water is proposed and the growth of oxide film is simulated. The duplex scale contains an outer magnetite layer and an inner Cr-rich spinel layer. According to the data of Backhaus and Töpfer, the diffusion coefficient values of iron in magnetite layer are discussed and the function of R V, R I {R}_{\text{I}} for oxygen activity can be used for calculation of iron diffusion coefficients in Cr-rich spinel layer. Based on Wagner’s oxidation theory, the oxidation rate constants of HCM12A are calculated at 500 and 600°C in supercritical water, compared with experimental data of the relevant literatures. The oxygen activities at the interfaces of alloy/Cr-rich spinel oxide and magnetite/supercritical water are estimated. The simulation results of weight gain are matched with the test data. The iron diffusion mechanisms inside the magnetite layer and the Cr-rich spinel layer are analyzed. The iron diffusion coefficient at the interface of Cr-rich spinel/magnetite is discontinuous, while the oxygen activity is continuous in the whole double layer. The thickness of oxide scale on inner tube walls of the final superheater coils (T91) of a 600 MW supercritical boiler is calculated by using the calculation method provided by the paper. The modeling results, the measured data, and the calculation results by the method are compared. Accurate calculation of the thickness of the inner and outer oxide scales can provide a necessary basis for predicting the stress and exfoliation of oxide scales.


2021 ◽  
Vol 40 (1) ◽  
pp. 178-192
Author(s):  
Wen-Qiang Ren ◽  
Lu Wang ◽  
Zheng-Liang Xue ◽  
Cheng-Zhi Li ◽  
Hang-Yu Zhu ◽  
...  

Abstract Thermodynamic analysis of the precipitation behavior, growth kinetic, and control mechanism of MnS inclusion in U75V heavy rail steel was conducted in this study. The results showed that solute element S had a much higher segregation ratio than that of Mn, and MnS would only precipitate in the solid–liquid (two-phase) regions at the late stage during the solidification process at the solid fraction of 0.9518. Increasing the cooling rate had no obvious influence on the precipitation time of MnS inclusion; however, its particle size would be decreased greatly. The results also suggested that increasing the concentration of Mn would lead to an earlier precipitation time of MnS, while it had little effect on the final particle size; as to S, it was found that increasing its concentration could not only make the precipitation time earlier but also make the particle size larger. Adding a certain amount of Ti additive could improve the mechanical properties of U75V heavy rail steel due to the formation of TiO x –MnS or MnS–TiS complex inclusions. The precipitation sequences of Ti3O5 → Ti2O3 → TiO2 → TiO → MnS → TiS for Ti treatment were determined based on the thermodynamic calculation.


Sign in / Sign up

Export Citation Format

Share Document