scholarly journals Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801

2008 ◽  
Vol 268 (1-2) ◽  
pp. 110-123 ◽  
Author(s):  
Olivier Rouxel ◽  
Shuhei Ono ◽  
Jeff Alt ◽  
Douglas Rumble ◽  
John Ludden
Geobiology ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 91-101 ◽  
Author(s):  
A. S. Bradley ◽  
W. D. Leavitt ◽  
M. Schmidt ◽  
A. H. Knoll ◽  
P. R. Girguis ◽  
...  

2012 ◽  
Vol 78 (23) ◽  
pp. 8368-8376 ◽  
Author(s):  
Min Sub Sim ◽  
Shuhei Ono ◽  
Tanja Bosak

ABSTRACTSulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, aDesulfovibriospecies, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochromec-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments.


2001 ◽  
Vol 65 (19) ◽  
pp. 3289-3298 ◽  
Author(s):  
Christof Bolliger ◽  
Martin H. Schroth ◽  
Stefano M. Bernasconi ◽  
Jutta Kleikemper ◽  
Josef Zeyer

Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 739-743 ◽  
Author(s):  
Alyssa J. Findlay ◽  
Valeria Boyko ◽  
André Pellerin ◽  
Khoren Avetisyan ◽  
Qingjun Guo ◽  
...  

Abstract The accumulation of oxygen in Earth’s atmosphere and oceans in the late Archean had profound implications for the planet’s biogeochemical evolution. Oxygen impacts sulfur cycling through the oxidation of sulfide minerals and the production of sulfate for microbial sulfate reduction (MSR). The isotopic signature of sulfur species preserved in the geologic record is affected by the prevailing biological and chemical processes and can therefore be used to constrain past oxygen and sulfate concentrations. Here, in a study of a late Archean analogue, we find that the sulfur isotopic signature in the water column of a seasonally stratified lake in southern China is influenced by MSR, whereas model results indicate that the isotopic signature of the underlying sediments can be best explained by concurrent sulfate reduction and sulfide oxidation. These data demonstrate that small apparent sulfur isotope fractionations (δ34Ssulfate-AVS = 4.2‰–1.5‰; AVS—acid volatile sulfides) can be caused by dynamic sulfur cycling at millimolar sulfate concentrations. This is in contrast to current interpretations of the isotopic record and indicates that small fractionations do not necessarily indicate very low sulfate or oxygen.


Sign in / Sign up

Export Citation Format

Share Document