oceanic basalts
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 16)

H-INDEX

49
(FIVE YEARS 4)

Geology ◽  
2021 ◽  
Author(s):  
Shuo Xue ◽  
Yuan Li

The Re-Os isotopic system serves as an important tracer of recycled crust in Earth’s deep mantle because of the large Re/Os ratios and time-integrated enrichment of radiogenic Os in Earth’s crust. However, the Re distribution in Earth’s known reservoirs is mass imbalanced, and the behavior of Re during subduction remains little understood. We performed laboratory experiments to determine the partition coefficients of Re between pyrrhotite and silicate melt (DRepo/sm) at 950–1080 °C, 1–3 GPa, and oxygen fugacities (in log units relative to the fayalite-magnetite-quartz [FMQ] buffer) of FMQ –1.3 to FMQ +2. The obtained DRepo/sm values are 200–25,000, which increase with decreasing oxygen fugacity and the total iron content (FeOtot) of silicate melt but decrease with increasing temperature or decreasing pressure. Applying DRepo/sm to constrain the behavior of Re during slab melting demonstrates that slab melts contribute minimal Re to the sub-arc mantle, with most Re dissolved in sulfides subducted into Earth’s deep mantle. Deep storage of recycled oceanic basalts and sediments can explain the mass imbalance of Re in Earth’s primitive mantle, depleted mantle, and crust.


Geology ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
James G. Ogg ◽  
Daniel Minguez ◽  
Mark W. Hounslow ◽  
Snorre Olaussen ◽  
...  

The age of the beginning of magnetic polarity Chron M0r, a proposed marker for the base of the Aptian Stage, is disputed due to a divergence of published radioisotopic dates and ambiguities in stratigraphic correlation of sections. Our magnetostratigraphy of core DH1 from Svalbard, Norway, calibrates a bentonite bed, dated by U-Pb methods to 123.1 ± 0.3 Ma, to the uppermost part of magnetozone M1r, which is ~1.9 m.y. before the beginning of Chron M0r. This is the first direct calibration of any high-precision radioisotopic date to a polarity chron of the M sequence. The interpolated age of 121.2 ± 0.4 Ma for the beginning of Chron M0r is younger by ~5 m.y. than its estimated age used in the Geologic Time Scale 2012, which had been extrapolated from radioisotopic dates on oceanic basalts and from Aptian cyclostratigraphy. The adjusted age model implies a commensurate faster average global oceanic spreading rate of ~12% during the Aptian–Santonian interval. Future radioisotopic dating and high-resolution cyclostratigraphy are needed to investigate where to expand the mid-Jurassic to earliest Cretaceous interval by the required ~4 m.y.


2021 ◽  
Vol 7 (11) ◽  
pp. eabc7394
Author(s):  
Helen M. Williams ◽  
Simon Matthews ◽  
Hanika Rizo ◽  
Oliver Shorttle

The differentiation of Earth ~4.5 billion years (Ga) ago is believed to have culminated in magma ocean crystallization, crystal-liquid separation, and the formation of mineralogically distinct mantle reservoirs. However, the magma ocean model remains difficult to validate because of the scarcity of geochemical tracers of lower mantle mineralogy. The Fe isotope compositions (δ57Fe) of ancient mafic rocks can be used to reconstruct the mineralogy of their mantle source regions. We present Fe isotope data for 3.7-Ga metabasalts from the Isua Supracrustal Belt (Greenland). The δ57Fe signatures of these samples extend to values elevated relative to modern equivalents and define strong correlations with fluid-immobile trace elements and tungsten isotope anomalies (μ182W). Phase equilibria models demonstrate that these features can be explained by melting of a magma ocean cumulate component in the upper mantle. Similar processes may operate today, as evidenced by the δ57Fe and μ182W heterogeneity of modern oceanic basalts.


2021 ◽  
Vol 7 (14) ◽  
pp. eabe9773
Author(s):  
Evan M. Smith ◽  
Peng Ni ◽  
Steven B. Shirey ◽  
Stephen H. Richardson ◽  
Wuyi Wang ◽  
...  

Subducting tectonic plates carry water and other surficial components into Earth’s interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni–rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (δ56Fe = 0.79 to 0.90‰) and unradiogenic osmium (187Os/188Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.


2021 ◽  
Author(s):  
John Krantz ◽  
Peter Barry ◽  
David Bekaert ◽  
Joshua Curtice

2021 ◽  
Vol 62 (1) ◽  
pp. 25-43
Author(s):  
V.V. Yarmolyuk ◽  
M.I. Kuzmin ◽  
T.V. Donskaya ◽  
D.P. Gladkochub ◽  
A.B. Kotov

Abstract —The time span between 3 and 2 Ga in the geologic history encompassed a number of key events on the cooling Earth. The cooling interrupted heat transfer within and across the mantle, which caused changes in Earth’s major spheres and in the mechanisms of their interaction. The great thermal divergence at 2.5 Ga and differentiation into the depleted upper asthenospheric and primitive lower mantle affected the compositions of oceanic basalts. The lower mantle cooling recorded by a systematic decrease in the temperature of komatiite magma generation at the respective depths began at 2.5 Ga and was accompanied by increasing abundance of arc basalts and by changes in the behavior of the Sr, Nd, and O isotope systems. It was the time when the continental lithosphere consisting of subcontinental lithospheric mantle and crust began its rapid growth, while the crust became enriched in felsic material with high contents of lithophile elements. Magmatism of the 3–2 Ga time span acquired more diverse major-element chemistry, with calc-alkaline and alkaline lithologies like carbonatite and kimberlite. The dramatic changes were driven by subduction processes, whereby the crust became recycled in the mantle and the double layer (D”) formed at the core–mantle boundary. The events of the 3–2 Ga interval created prerequisites for redox changes on the surface and release of free oxygen into the atmosphere. In terms of global geodynamics, it was transition from stagnantlid tectonics to plate tectonic regime, which approached the present-day style about 2.0–1.8 Ga.


2020 ◽  
Vol 205 ◽  
pp. 103174 ◽  
Author(s):  
Hugues Beunon ◽  
Nadine Mattielli ◽  
Luc S. Doucet ◽  
Bertrand Moine ◽  
Baptiste Debret

Geosaberes ◽  
2020 ◽  
Vol 11 ◽  
pp. 349
Author(s):  
Mohammad Ali Arian ◽  
Mostafa Baratian ◽  
Abdollah Yazdi

Siah Kooh area is northeast of Shahroud city and is located in eastern Alborz. The lithologic composition of the volcanic rocks in the area consists of andesite, basalt, trachyandesite and quartztrachite. Plagioclase, olivine, and augite phenocrysts as the main minerals and apatite and magnetite, sericite, chlorite and apacite minerals are sub-minerals of volcanic rocks that are located in the glass slabs. Quartz is also found in fine-grained rock pulp and sometimes in phenocrysts. The dominant texture in these rocks are porphyritic, amygdaloidal and microlithic. According to geochemical studies of basaltic magmatic volcanic rocks, calc-alkaline potassium is high and negative Nb anomaly, Ce / Pb ratio and enrichment of rocks of light rare earth elements (LRRE) and high LREE / HREE ratio indicate contamination. The crust is an indicator of the presence of the garnet phase in the mantle source. On the other hand, the similarity of their trace elements to Oceanic Basalts (OIB) is a clear evidence of their relevance to this environment. Early basaltic magma originated from a mantle with a garnet-lherzolite composition with a partial melting rate of 15–12%. FeOtotal values in basalts and other structural evidence indicate the formation of these rocks in the early stages of intra-continental rifting which can be attributed to the pressure drop caused by intra-continental tidal phases associated with deep faults during the orogenic phases. Alpine attributed to Eocene time.


Sign in / Sign up

Export Citation Format

Share Document