s isotope
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 47)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 59 (6) ◽  
pp. 1363-1380
Author(s):  
Jarlen J. Keet ◽  
Frederick Roelofse ◽  
Christoph D.K. Gauert ◽  
Danie Grobler ◽  
Mike Butler

ABSTRACT The Flatreef, a down-dip, sub-horizontal extension of the Platreef, which underlies the Turfspruit and Macalacaskop farms, represents the future of platinum mining in South Africa. The stratigraphic connection between the Platreef, located at the base of the northern limb of the Bushveld Complex, and the Merensky Reef in the western and eastern limbs of the complex, was disputed for many years due to the heterogeneous nature of the Platreef along strike. However, the discovery of the Flatreef led to a new perspective on the Platreef as the former allowed for the study of a magmatic stratigraphy less affected by footwall interaction. Here, we report whole-rock S isotope (δ34S) compositions across the stratigraphic units of the Flatreef and its footwall and hanging wall as intersected by boreholes UMT-276 and UMT-393, as well as stratigraphic units of the Merensky Reef at Two Rivers Platinum mine in the eastern limb. The units of the Flatreef containing platinum group element mineralization, namely the Main Reef and Upper Reef, have δ34S values that overlap with the range recorded for the Merensky Reef in the western and eastern limbs. In UMT-393, Main Reef δ34S values range between 0.2 and 1.5‰ (with the exception of three outliers, 9.7‰, 11.1‰, and 7.9‰), and 0.52‰ and 11.2‰ for two Upper Reef samples. However, in UMT-276, Main Reef δ34S values range between –0.96 and 2.24‰ and 3.19‰ was recorded for an Upper Reef sample. The S isotope compositions recorded for the Merensky Reef pyroxenite at Two Rivers Platinum mine are relatively higher with δ34S values ranging between 1.24 and 4.83‰. The top unit of the Flatreef, which is a transition zone below the Main Zone, as well as the Footwall Cyclic Unit have heavier S isotope compositions with δ34S values ranging between 6 and 17‰ for the former and 0.7 and 18.6‰ for the latter. At Two Rivers Platinum mine, the hanging-wall anorthosite has a δ34S value of 2.9‰ in contrast to the 5.7‰ measured for the footwall anorthosite and 3.27‰ for the footwall feldspathic pyroxenite. The consistent near-mantle S isotope signature and accompanying metal enrichment in the Main Reef of the Flatreef may be explained by extensive interaction of sulfide minerals in a Lower Zone conduit/pre-Platreef staging chamber with large volumes of uncontaminated magma. The δ34S values of the Merensky Reef at Two Rivers Platinum mine are slightly higher compared to that of the Main Reef at Turfspruit and Macalacaskop possibly due to interaction with underlying carbonate rocks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256404
Author(s):  
Han-Seul Lee ◽  
Ji-Yu Shim ◽  
Woo-Jin Shin ◽  
Seung-Hyun Choi ◽  
Yeon-Sik Bong ◽  
...  

Dietary homogenization has progressed worldwide due to westernization and the globalization of food production systems. We investigated dietary heterogeneity in South Korea by examining the spatial distribution of carbon (C), nitrogen (N), and sulfur (S) isotope ratios using 264 human hair samples. Overall, variation in isotope values was small, indicating low dietary heterogeneity. We detected differences in δ13C, δ15N, and δ34S values between administrative provinces and metropolitan cities; inter-regional differences were typically < 1 ‰. Values of δ34S were significantly lower in hair samples from inland regions relative to those from coastal locations, and a similar pattern was observed in δ15N values. Understanding geographic variation in δ34S and δ15N values in human hair is useful for provenancing humans in South Korea.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254992
Author(s):  
Claire E. Ebert ◽  
Asta J. Rand ◽  
Kirsten Green-Mink ◽  
Julie A. Hoggarth ◽  
Carolyn Freiwald ◽  
...  

Maya archaeologists have long been interested in understanding ancient diets because they provide information about broad-scale economic and societal transformations. Though paleodietary studies have primarily relied on stable carbon (δ13C) and nitrogen (δ15N) isotopic analyses of human bone collagen to document the types of food people consumed, stable sulfur (δ34S) isotope analysis can potentially provide valuable data to identify terrestrial, freshwater, or marine/coastal food sources, as well as determine human mobility and migration patterns. Here we assess applications of δ34S for investigating Maya diet and migration through stable isotope analyses of human bone collagen (δ13C, δ15N, and δ34S) from 114 individuals from 12 sites in the Eastern Maya lowlands, temporally spanning from the Late Preclassic (300 BCE—300 CE) through Colonial periods (1520–1800 CE). Results document a diet dominated by maize and other terrestrial resources, consistent with expectations for this inland region. Because δ34S values reflect local geology, our analyses also identified recent migrants to the Eastern lowlands who had non-local δ34S signatures. When combined with other indicators of mobility (e.g., strontium isotopes), sulfur isotopic data provide a powerful tool to investigate movement across a person’s lifespan. This study represents the largest examination of archaeological human δ34S isotope values for the Maya lowlands and provides a foundation for novel insights into both subsistence practices and migration.


Sign in / Sign up

Export Citation Format

Share Document