scholarly journals On Archean craton growth and stabilisation: Insights from lithospheric resistivity structure of the Superior Province

2021 ◽  
Vol 562 ◽  
pp. 116853
Author(s):  
G.J. Hill ◽  
E.A. Roots ◽  
B.M. Frieman ◽  
R. Haugaard ◽  
J.A. Craven ◽  
...  
2016 ◽  
Author(s):  
Robert Delhaye ◽  
Volker Rath ◽  
Alan G. Jones ◽  
Mark R. Muller ◽  
Derek Reay

Abstract. Galvanic distortions of magnetotelluric (MT) data, such as the static shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes, however static shift correction is required in order to ensure robust and precise modelling accuracy. We propose a method employing frequency–domain electromagnetic data for static shift correction, which in our case are regionally available with high spatial density. The spatial distributions of the derived static shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static shift corrections, with instructive results. As expected from the one–dimensional analogy of static shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie’s Law, between the two models reinforces our conclusion that the sub–order of magnitude resistivity contrasts induced by correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static shift correction, is essential.


1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


Sign in / Sign up

Export Citation Format

Share Document