mountain front
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 68)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhixiong Xu ◽  
Xueqing Teng ◽  
Ning Li ◽  
Hongtao Liu ◽  
Caiting Zhao ◽  
...  

Abstract The implementation of drilling technique for multiple lithology interbeds and high-pressure anhydrite-salt in the complex Mountain Front area has been completed. The plastic creep of the anhydrite-salt layers, the losses of the low-pressure sandstone, the overflow of the high-pressure salt-water, the narrow mud density window and frequent pipe-stuck occurrence are significant issues, which trigger significant engineering challenges downhole. This study presents the application of the reaming-while-drilling (RWD) technology which has led to minimize the downhole non-productive time (NPT) and achieve successful results. The RWD technique was applied in the composite anhydrite-salt formation of the Kumugeliemu group. Through optimized combination of the RWD tools, bits, reaming blades, and the mechanical analysis the drill string with shock-absorbing design and hydraulics optimization to guarantee the bit and the reamer blades have the proper pressure drop, hydraulic horsepower and flow-field distribution, the RWD was used with the vertical seeking tool drilling technology, resulting in minimum vibration and/or stick-slip, and achieving the expected rate of penetration (ROP) as well as target inclination. It improved the operation efficiency significantly while avoiding the downhole complexities at the same time. Since the geological structure of the offset well Keshen X (no RWD) is similar to Keshen XX (RWD technology was applied), a comparison between the two wells was performed. The reaming meterage in the composite anhydrite-salt layers in Keshen XX was 791 m, spending 15 days, average ROP is 3.73 m/hr. There was no overflew or loss during the drilling. It was smooth, no pipe sticking when checking the reaming effect during the wiper trip and the tripping out. On the other hand, Keshen X spent 29 days with average ROP of 1.35 m/hr to drill the 449 m composite anhydrite-salt rock. Moreover, it was difficult to trip in and trip out during the drilling, and the pipe sticking happened frequently, back-reaming frequently as well. There were losses during both the drilling and the casing running. Due to the unsmooth wellbore, this well increased additional 3 runs of reaming after drilling operation and 4 clean-out runs. 13 days later after the reaming operation, the anhydrite-salt rock creep was checked and found that the hole was still smooth, no pipe sticking existing. Hence, RWD technology has accomplished both goals of preventing the downhole complexities and speeding up drilling. The novel RWD technology can be well illustrated by presenting all the details of its application in salt-base formations.


Author(s):  
Yuqing He ◽  
Teng Wang ◽  
Lihua Fang ◽  
Li Zhao

Abstract The Keping-tage fold-and-thrust belt in southwest Tian Shan is seismically active, yet the most well-recorded earthquakes occurred south of the mountain front. The lack of large earthquakes beneath the fold-and-thrust belt thus hinders our understanding of the orogenic process to the north. The 2020 Mw 6.0 Jiashi earthquake is an important event with surface deformation in the fold-and-thrust belt well illuminated by Interferometric Synthetic Aperture Radar, providing an opportunity to study the present-day kinematics of the thrust front through the analysis of satellite measurements of surface deformations. Here, we employ the surface deformation and relocated aftershocks to investigate the fault-slip distribution associated to this event. Further added by an analysis of Coulomb stress changes, we derive a fault model involving slips on a shallow, low-angle (∼10°) north-dipping thrust fault as well as on a left-lateral tear fault and a high-angle south-dipping reverse fault in mid-crust. Aftershocks at depth reflect the basement-involved shortening activated by a thin-skinned thrust faulting event. In addition, this earthquake uplifted the southernmost mountain front with relatively low topography, indicating the basin-ward propagation of the southwest Tian Shan.


2021 ◽  
Author(s):  
Harrison K. Martin ◽  
Douglas A. Edmonds

Abstract. River avulsions are an important mechanism by which sediment is routed and emplaced in foreland basins. However, because avulsions occur infrequently, we lack observational data that might inform where, when, and why avulsions occur and these questions are instead often investigated by rule-based numerical models. These models have historically simplified or neglected the effects of abandoned channels on avulsion dynamics, even though fluvial megafans in foreland basins are characteristically covered in abandoned channels. Here, we investigate the pervasiveness of abandoned channels on modern fluvial megafan surfaces. Then, we present a physically based cellular model that parameterizes interactions between a single avulsing river and abandoned channels in a foreland basin setting. We investigate how abandoned channels affect avulsion set-up, pathfinding, and landscape evolution. We demonstrate and discuss how the processes of abandoned channel inheritance and transient knickpoint propagation post-avulsion serve to shortcut the time necessary to set-up successive avulsions. Then, we address the idea that abandoned channels can both repel and attract future pathfinding flows under different conditions. By measuring the distance between the mountain-front and each avulsion over long (106 to 107 years) timescales, we show that increasing abandoned channel repulsion serves to push avulsions farther from the mountain-front, while increasing attraction pulls avulsions proximally. Abandoned channels do not persist forever, and we test possible channel healing scenarios (deposition-only, erosion-only, and far-field directed) and show that only the final scenario achieves dynamic equilibrium without completely filling accommodation space. We also observe megafan growth occurring via ~O:105 year lobe switching, but only in our runs that employ deposition-only or erosion-only healing modes. Finally, we highlight opportunities for future field work and remote sensing efforts to inform our understanding of the role that floodplain topography, including abandoned channels, plays on avulsion dynamics.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 400
Author(s):  
David Behrens ◽  
Jeff B. Langman ◽  
Erin S. Brooks ◽  
Jan Boll ◽  
Kristopher Waynant ◽  
...  

The heterogeneity and anisotropy of fractured-rock aquifers, such as those in the Columbia River Basalt Province, present challenges for determining groundwater recharge. The entrance of recharge to the fractured-basalt and interbedded-sediment aquifer in the Palouse region of north-central Idaho is not well understood because of successive basalt flows that act as restrictive barriers. It was hypothesized that a primary recharge zone exists along the basin’s eastern margin at a mountain-front interface where eroded sediments form a more conductive zone for recharge. Potential source waters and groundwater were analyzed for δ18O and δ2H to discriminate recharge sources and pathways. Snowpack values ranged from −22 to −12‰ for δ18O and from −160 to −90‰ for δ2H and produced spring-time snowmelt ranging from −16.5 to −12‰ for δ18O and from −120 to −90‰ for δ2H. With the transition of snowmelt to spring-time ephemeral creeks, the isotope values compressed to −16 and −14‰ for δ18O and −110 and −105‰ for δ2H. A greater range of values was present for a perennial creek (−18 to −13.5‰ for δ18O and −125 to −98‰ for δ2H) and groundwater (−17.5 to −13‰ for δ18O and −132 to −105‰ for δ2H), which reflect a mixing of seasonal signals and the varying influence of vapor sources and sublimation/evaporation. Inverse modeling and the evaluation of matrix characteristics indicate conductive pathways associated with paleochannels and deeper pathways along the mountain-front interface. Depleted isotope signals indicate quicker infiltration and recharge pathways that were separate from, or had limited mixing with, more evaporated water that infiltrated after greater time/travel at the surface.


2021 ◽  
pp. 1-16
Author(s):  
François B. Lanoë ◽  
M. Nieves Zedeño ◽  
Anna M. Jansson ◽  
Vance T. Holliday ◽  
Joshua D. Reuther

Abstract The Northern Rocky Mountain Front (hereafter Northern Front) is a prominent geographic feature in archaeological models of human dispersal in the terminal Pleistocene and Early Holocene of North America. Testing those models has been arduous because of local geomorphological factors that tend to obliterate or otherwise limit access to archaeological finds of relevant age. In this paper, we present well-stratified archaeological and environmental records dating back to 14,000–13,000 cal yr BP from the site of Billy Big Spring (Blackfeet Indian Reservation, Montana), located on a glacial kettle, a type of landform that has been largely ignored by regional archaeological research to date. Findings from Billy Big Spring show the continuous use of the Northern Front foothills throughout the major climatic and environmental disturbances of the Early Holocene, and possibly the terminal Pleistocene as well. As such, Billy Big Spring contributes to refining several archaeological models of early settlement of the Northern Front, particularly those that posit differential use of foothills versus plains settings during the midst of the Holocene Thermal Maximum. The record at Billy Big Spring also suggests that kettles, regardless of physiographic setting, provide a yet unsuspected and unsampled potential for preserving high-quality and easily accessible early archaeological and paleoenvironmental records.


2021 ◽  
Author(s):  
Yiran Wang ◽  
Michael E. Oskin ◽  
Youli Li ◽  
Huiping Zhang

Abstract. Located at the transition between monsoon and westerly dominated climate systems, major rivers draining the western North Qilian Shan incise deep, narrow canyons into latest Quaternary foreland basin sediments of the Hexi Corridor. Field surveys show that the Beida River incised 125 m at the mountain front over the Late Pleistocene and Holocene at an average rate of 6 m/kyr. We hypothesize that a steep knickzone, with 3 % slope, initiated at the mountain front and has since retreated to its present position, 10 km upstream. Terrace dating results suggest this knickzone formed around the mid-Holocene, over a duration of less than 1.5 kyr, during which incision accelerated to at least 25 m/kyr. These incision rates are much larger than the uplift rate across the North Qilian fault, which suggests a climate-related increase in discharge drove rapid incision over the Holocene and formation of the knickzone. Using the relationship between incision rates and the amount of base level drop, we show the maximum duration of knickzone formation to be 700 yr and the minimum incision rate to be 50 m/kyr. This period of increased river incision is the result of increasing excess discharge, which likely corresponds to a pluvial lake-filling event at the terminus of the Beida River and correlates with a wet period driven by strengthening of the Southeast Asian Monsoon.


2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


2021 ◽  
pp. 146960532110198
Author(s):  
María Nieves Zedeño ◽  
Evelyn Pickering ◽  
François Lanoë

We highlight the significance of process, event, and context of human practice in Indigenous Creation traditions to integrate Blackfoot “Napi” origin stories with environmental, geological, and archaeological information pertaining to the peopling of the Northwestern Plains, where the northern Rocky Mountain Front may have played a prominent role. First, we discuss the potential and limitations of origin stories generally, and Napi stories specifically, for complementing the fragmentary records of early human presence in the Blackfoot homeland. Second, we demonstrate the intimate connection among processes, events, place-making practices, and stories. Last, we aim to expand multivocality in the interpretation of the deep past through an archaeological practice that considers Indigenous philosophies and stories to be as valid as non-Indigenous ones.


2021 ◽  
Vol 771 ◽  
pp. 145456
Author(s):  
Ronny Figueroa ◽  
Benoît Viguier ◽  
Matías Taucare ◽  
Gonzalo Yáñez ◽  
Gloria Arancibia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document