element transfer
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 903 ◽  
pp. 9-14
Author(s):  
Vitālijs Lazarenko ◽  
Karina Babiča ◽  
Zenta Balcerbule ◽  
Māris Bērtiņš ◽  
Arturs Viksna

The aim of the research was to evaluate the content of metallic elements in different parts of lingonberries (Vaccinium vitis-idaea L.) depending on their place of growth and evaluate the transfer factor values from between different parts of plants (fine roots, leaves, berries). Obtained results show that there are no significant differences between the content of Fe, Cu, Zn and K, and there are similar element transfer factors between different parts of lingonberries independent from which site the samples are taken.


2021 ◽  
Vol 172 ◽  
pp. 107166
Author(s):  
Mohammed Hakkar ◽  
Fatima Ezzahra Arhouni ◽  
Ahmed Mahrou ◽  
Essaid Bilal ◽  
Martin Bertau ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 682
Author(s):  
Anatoliy Petrovich Sorokin ◽  
Andrey Alexeyevich Konyushok ◽  
Valeriy Mikhailovich Kuz’minykh ◽  
Sergey Vadimovich Dugin

The primary sources and the conditions for the formation of the Paleogene–Neogene coal-bearing deposits in the Zeya–Bureya sedimentary basin were identified and studied with the help of paleogeographic reconstructions and geochemical analyses. Based on the results obtained, we suggest a new basic model of element transfer into the coal, involving two mutually complementary processes to account for the introduction and concentration of gold and other trace elements in the sequences investigated. The first process reflects the system in which peatlands were concentrated along the basin’s junction zone and the passive internal residual mountain ranges. The second reflects the junction’s contrast-type (sharp-type) forms conditions along the external mobile mountain-fold frame. The eroded gold particles were transported over 10–20 km as complex compounds, colloids, dispersed particles, and nanoparticles, and remobilized into clastogenic and dissolved forms along the first few kilometers. The release of gold in the primary sources occurred due to weathering of gold-bearing ore zones, followed by transportation of gold by minor rivers to the areas of peat accumulation. This study considered the probability of the accumulation of high concentrations of gold and rare earth elements (REE) in coal due to the introduction of organic and inorganic materials during floods, with episodes of catastrophic events, and volcano–hydrothermal activities.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Richen Zhong ◽  
Min Zhang ◽  
Chang Yu ◽  
Hao Cui

A subduction zone plays a critical role in forging continental crust via formation of arc magmas, which are characteristically enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs). This trace element pattern results from the different mobilities of LILEs and HFSEs during slab-to-wedge mass transfer, but the mechanisms of trace element transfer from subducting crusts are not fully understood. In this study, thermodynamic simulations are carried out to evaluate the mobilities of K and Zr, as representative cases of LILE and HFSE, respectively, in slab fluids. The fluids buffered by basaltic eclogite can dissolve > 0.1 molal of K at sub-arc depths (~3 to 5.5 GPa). However, only minor amounts of K can be liberated by direct devolatilization of altered oceanic basalt, because sub-arc dehydration mainly takes place at temperatures < 600 °C (talc-out), wherein the fluid solubility of K is very limited (<0.01 molal). Therefore, serpentinite-derived fluids are required to flush K from the eclogite. The solubility of K can be enhanced by the addition of NaCl to the fluid, because fluid Na+ can unlock phengite-bonded K via a complex ion exchange. Finally, it is further confirmed that Zr and other HFSEs are immobile in slab fluids.


2021 ◽  
Author(s):  
Christos Karkalis ◽  
Andreas Magganas ◽  
Petros Koutsovitis ◽  
Theodoros Ntaflos

&lt;p&gt;In Central Evia island (Aegean-Greece) serpentinized ultramafic rocks appear as elongated thrust sheets or in the form of olistostromes incorporated within Maestrichtian-Paleocene flysch. These are crosscut by well-developed rodingite dykes that were derived from four main protoliths that include i) Boninites, ii) Island-arc Tholeiitic Basalts and Gabbros, iii) Alkaline basalts and iv) Calc-alkaline basalts. They mainly comprise of minerals that include (hydro)garnet + chlorite + clinopyroxene &amp;#177; vesuvianite. Accessory minerals include spinel &amp;#177; calcite &amp;#177; prehnite &amp;#177; amphibole &amp;#177; orthopyroxene &amp;#177; olivine &amp;#177; quartz &amp;#177; opaque Fe-Ti oxides. Rodingites that were formed at the expense of boninites and island-arc tholeiitic rocks were likely formed within a single rodingitization stage, since garnet is mainly grossular-rich and relict primary clinopyroxene has been preserved. The rodingitization of the alkaline and calc-alkaline basalts seems to have occurred as a multi-stage metasomatic process that occurred during the exhumation of the mafic-ultramafic mantle wedge complex. This resulted in the development of late-stage andradite, vesuvianite and in some cases of chlorite during derodingitization. In this case, successive reaction zones with variability in the participating mineral phases were developed. &amp;#160;Geochemical results reveal remarkable rare earth element (REE) enrichments, especially in the inner zones, likely being the result of successive diffusion and element transfer. Few rodingites are characterized as calcite-bearing, whose stable &lt;sup&gt;13&lt;/sup&gt;C-&lt;sup&gt;18&lt;/sup&gt;O isotopic data points to the restricted involvement of late-stage mixed hydrothermal and seawater-related carbonation processes.&lt;/p&gt;


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Sign in / Sign up

Export Citation Format

Share Document