scholarly journals Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller

2012 ◽  
Vol 84 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Hany M. Hasanien ◽  
S.M. Muyeen
Author(s):  
Zribi Ali ◽  
Zaineb Frijet ◽  
Mohamed Chtourou

In this paper, based on the combination of particle swarm optimization (PSO) algorithm and neural network (NN), a new adaptive speed control method for a permanent magnet synchronous motor (PMSM) is proposed. Firstly, PSO algorithm is adopted to get the best set of weights of neural network controller (NNC) for accelerating the convergent speed and preventing the problems of trapping in local minimum. Then, to achieve high-performance speed tracking despite of the existence of varying parameters in the control system, gradient descent method is used to adjust the NNC parameters. The stability of the proposed controller is analyzed and guaranteed from Lyapunov theorem. The robustness and good dynamic performance of the proposed adaptive neural network speed control scheme are verified through computer simulations.


2010 ◽  
Vol 44-47 ◽  
pp. 1672-1676
Author(s):  
Jing Feng Mao ◽  
Guo Qing Wu ◽  
Ai Hua Wu ◽  
Xu Dong Zhang ◽  
Yang Cao ◽  
...  

This paper presents a theoretical analysis and experimental evaluation of the switched reluctance generator (SRG) for off-grid variable-speed wind energy applications. The detailed model, control parameters and operational characteristics of the SRG as well as variable-speed wind turbine are discussed. In order to drive the wind energy conversion system (WECS) to the point of maximum aerodynamic efficiency, a SRG power output feedback control strategy which optimized angle position-current chopping control cooperating PI regulator is proposed. The control strategy is also demonstrated by means of Matlab/Simulink. Moreover, an experimental test system is set up, which a cage induction machine is used to emulate the variable-speed wind turbine. The experimental results validate the proposed control strategy and confirm the SRG performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Li ◽  
Kaide Ren ◽  
Haiying Dong ◽  
Shuaibing Li

The rapid development of wind generation technology has boosted types of the new topology wind turbines. Among the recently invented new wind turbines, the front-end speed regulated (FSR) wind turbine has attracted a lot of attention. Unlike conventional wind turbine, the speed regulation of the FSR machines is realized by adjusting the guide vane angle of a hydraulic torque converter, which is converterless and much more grid-friendly as the electrically excited synchronous generator (EESG) is also adopted. Therefore, the drive chain control of the wind turbine owns the top priority. To ensure that the FSR wind turbine performs as a general synchronous generator, this paper firstly modeled the drive chain and then proposed to use the variable-universe fuzzy approach for the drive chain control. It helps the wind generator operate in a synchronous speed and outperform other types of wind turbines. The multipopulation genetic algorithm (MPGA) is adopted to intelligently optimize the parameters of the expansion factor of the designed variable-universe fuzzy controller (VUFC). The optimized VUFC is applied to the speed control of the drive chain of the FSR wind turbine, which effectively solves the contradiction between the low precision of the fuzzy controller and the number of rules in the fuzzy control and the control accuracy. Finally, the main shaft speed of the FSR wind turbine can reach a steady-state value around 1500 rpm. The response time of the results derived using VUFC, compared with that derived from a neural network controller, is only less than 0.5 second and there is no overshoot. The case study with the real machine parameter verifies the effectiveness of the proposal and results compared with conventional neural network controller, proving its outperformance.


Sign in / Sign up

Export Citation Format

Share Document