The effects of work height, workpiece orientation, gender, and screwdriver type on productivity and wrist deviation

2004 ◽  
Vol 33 (4) ◽  
pp. 339-346 ◽  
Author(s):  
Patrick G Dempsey ◽  
Raymond W McGorry ◽  
Niall V O’Brien
2002 ◽  
Vol 124 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Stephen P. Radzevich ◽  
Erik D. Goodman

Optimal workpiece orientation for multi-axis sculptured part surface machining is generally defined as orientation of the workpiece so as to minimize the number of setups in 4-, 5- or more axis Numerical Control (NC) machining, or to allow the maximal number of surfaces to be machined in a single setup on a three-, four-, or five-axis NC machine. This paper presents a method for computing such an optimal workpiece orientation based on the geometry of the part surface to be machined, of the machining surface of the tool, and of the degrees of freedom available on the multi-axis NC machine. However, for cases in which some freedom of orientation remains after conditions for machining in a single setup are satisfied, a second sort of optimality can also be considered: finding an orientation such that the cutting condition (relative orientation of the tool axis and the normal to the desired part surface) remains as constant, at some optimal angle, as possible. This second form of optimality is obtained by choosing an orientation (within the bounds of those allowing a single setup) in which the angle between the neutral axis of the milling tool and the area-weighted mean normal to the part surface, at a “central” point with a normal in that mean direction, is zero, or as small as possible. To find this solution, Gaussian maps (GMap) of the part surfaces to be machined and the machining surface of the tool are applied. To our knowledge, we are the first [1] who have picked up this Gauss’ idea to sculptured part surface orientation problem and who have developed the general approach to solve this important engineering problem [2]. Later a similar approach was claimed by Gan [3]. By means of GMaps of these surfaces, the problem of optimal workpiece orientation can be formulated as a geometric problem on a sphere. The GMap on a unit sphere finds wide application for orientation of workpiece for NC machining, for probing on coordinate measuring machines, etc. GMaps are useful for selecting the type of cutting tool, its path, workpiece fixturing, and the type of NC machine (its kinematic capabilities). The primary process application addressed is 3- and 4-axis NC milling, although the techniques presented may be applied to machines with more general articulation. The influence of tool geometry is also discussed and incorporated within a constrained orientation algorithm. This paper covers the following topics: a) the derivation of the equations of the GMap of the part surface to be machined and the machining surface of the tool; b) calculation of the parameters of the weighted normal to the part surface; c) optimal part orientation on the table of a multi-axis NC machine; d) introduction of a new type of GMap for a sculptured part surface—its expandedGMapE; and e) introduction of a new type of indicatrix of a sculptured part surface and a particular cutting tool–the indicatrix of machinability.


1996 ◽  
Vol 28 (8) ◽  
pp. 577-587 ◽  
Author(s):  
Prosenjit Gupta ◽  
Ravi Janardan ◽  
Jayanth Majhi ◽  
Tony Woo

2021 ◽  
Vol 2095 (1) ◽  
pp. 012054
Author(s):  
Jian Wang ◽  
Ziting Chen

Abstract Conveyor belt transfer is a widely used transportation means in industry and agriculture, with the help of the robot arms the workpiece on the belt can be picked and placed, replacing human sorters for production lines work. The position and orientation of the workpiece are important for grabbing by the robot arms. The goal of the paper was to investigate the acquisition of the position and orientation of the conveyor belt workpiece by means of the camera video overhead looking down the belt. The proposed method is the inter frame difference in nature, using the conveyor belt background as the first frame, but the other frames were not used wholly as usually, only an ROI all around the conveyor belt in the camera video was chosen, and the inter frame difference was carried out in the ROI. The ROI was of the same width as that of the belt in the video which was known in advance, while the length of the ROI was arbitrary, so one pixel in the frame was scaled to the actual length conveniently. Every read frame behind the background was computed the difference with the background in such ROI, and the four vertexes coordinates of the rectangle workpiece image on the belt were obtained when it passed the ROI, and then the distance apart from the right belt boundary was calculated due to the proportional relation between the width of workpiece and that of the ROI. Two kind workpiece orientation on the belt toward the left and right were judged using the same obtained four vertexes coordinates by means of Euclidian length, and the tilt angle was calculated by arc tangent function in favour of two narrow sides of rectangle workpiece grab. The actual test showed that the method of obtaining the position and orientation of workpiece on the belt proposed in the paper could be realized correctly.


Procedia CIRP ◽  
2014 ◽  
Vol 14 ◽  
pp. 575-580 ◽  
Author(s):  
Gianni Campatelli ◽  
Antonio Scippa ◽  
Lorenzo Lorenzini

1992 ◽  
Vol 114 (1) ◽  
pp. 67-73 ◽  
Author(s):  
M. M. Ohadi ◽  
A. I. Ansari ◽  
M. Hashish

Distribution of thermal energy in the workpiece during cutting with an abrasive waterjet (AWJ) was studied experimentally. Detailed time-temperature measurements in the workpiece as a function of jet pressure, traverse rate, workpiece material, and workpiece orientation were performed. It is shown that maximum temperatures occur at the immediate vicinity of the cutting interface and sharply decay thereafter with increasing distance from the interface. A higher jet pressure and/or a lower traverse speed results in higher temperatures in the workpiece. A material with higher thermal conductivity experiences higher temperatures during the cut. Within the workpiece, higher temperatures occur at inner zones where the jet-induced cooling effects are minimum.


1992 ◽  
Vol 114 (3) ◽  
pp. 477-485 ◽  
Author(s):  
K. Tang ◽  
T. Woo ◽  
J. Gan

Orienting the workpiece in such a way as to minimize the number of setups in a 4-axis or a 5-axis Numerical Control (NC) machine is formulated as follows: Given a set of spherical polygons (that are representations of curved surfaces visible to a 3-axis NC machine), find a great circle (the 4th axis) or a band (the 4th and the 5th axes) containing a great circle that intersects the polygons maximally. While there are potentially infinitely many solutions to this problem, a sphere is partitioned into O(N2) regions based on the N polygons. Within each of these regions, it is shown that it requires O(NlogN) time to determine maximum intersections and all the solutions are congruent. Central projection mapping is employed so as to present the algorithms in the plane.


Sign in / Sign up

Export Citation Format

Share Document