Thermal Energy Distributions in the Workpiece During Cutting With an Abrasive Waterjet

1992 ◽  
Vol 114 (1) ◽  
pp. 67-73 ◽  
Author(s):  
M. M. Ohadi ◽  
A. I. Ansari ◽  
M. Hashish

Distribution of thermal energy in the workpiece during cutting with an abrasive waterjet (AWJ) was studied experimentally. Detailed time-temperature measurements in the workpiece as a function of jet pressure, traverse rate, workpiece material, and workpiece orientation were performed. It is shown that maximum temperatures occur at the immediate vicinity of the cutting interface and sharply decay thereafter with increasing distance from the interface. A higher jet pressure and/or a lower traverse speed results in higher temperatures in the workpiece. A material with higher thermal conductivity experiences higher temperatures during the cut. Within the workpiece, higher temperatures occur at inner zones where the jet-induced cooling effects are minimum.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1790
Author(s):  
Francesco Galvagnini ◽  
Andrea Dorigato ◽  
Luca Fambri ◽  
Giulia Fredi ◽  
Alessandro Pegoretti

Syntactic foams (SFs) combining an epoxy resin and hollow glass microspheres (HGM) feature a unique combination of low density, high mechanical properties, and low thermal conductivity which can be tuned according to specific applications. In this work, the versatility of epoxy/HGM SFs was further expanded by adding a microencapsulated phase change material (PCM) providing thermal energy storage (TES) ability at a phase change temperature of 43 °C. At this aim, fifteen epoxy (HGM/PCM) compositions with a total filler content (HGM + PCM) of up to 40 vol% were prepared and characterized. The experimental results were fitted with statistical models, which resulted in ternary diagrams that visually represented the properties of the ternary systems and simplified trend identification. Dynamic rheological tests showed that the PCM increased the viscosity of the epoxy resin more than HGM due to the smaller average size (20 µm vs. 60 µm) and that the systems containing both HGM and PCM showed lower viscosity than those containing only one filler type, due to the higher packing efficiency of bimodal filler distributions. HGM strongly reduced the gravimetric density and the thermal insulation properties. In fact, the sample with 40 vol% of HGM showed a density of 0.735 g/cm3 (−35% than neat epoxy) and a thermal conductivity of 0.12 W/(m∙K) (−40% than neat epoxy). Moreover, the increase in the PCM content increased the specific phase change enthalpy, which was up to 68 J/g for the sample with 40 vol% of PCM, with a consequent improvement in the thermal management ability that was also evidenced by temperature profiling tests in transient heating and cooling regimes. Finally, dynamical mechanical thermal analysis (DMTA) showed that both fillers decreased the storage modulus but generally increased the storage modulus normalized by density (E′/ρ) up to 2440 MPa/(g/cm3) at 25 °C with 40 vol% of HGM (+48% than neat epoxy). These results confirmed that the main asset of these ternary multifunctional syntactic foams is their versatility, as the composition can be tuned to reach the property set that best matches the application requirements in terms of TES ability, thermal insulation, and low density.


2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Latent thermal energy storage (LTES) system offers high energy storage density and nearly isothermal operation for concentrating solar power generation. However, the low thermal conductivity possessed by the phase change material (PCM) used in LTES system limits the heat transfer rates. Utilizing thermosyphons to charge or discharge a LTES system offers a promising engineering solution to compensate for the low thermal conductivity of the PCM. The present work numerically investigates the enhancement in the thermal performance of charging and discharging process of LTES system by embedding thermosyphons. A transient, computational analysis of the LTES system with embedded thermosyphons is performed for both charging and discharging cycles. The influence of the design configuration of the system and the arrangement of the thermosyphons on the charge and discharge performance of the LTES installed in a concentrating solar power plant (CSP) is analyzed to identify configurations that lead to improved effectiveness.


1976 ◽  
Vol 40 (2) ◽  
pp. 127-131 ◽  
Author(s):  
J. LeBlanc ◽  
B. Blais ◽  
B. Barabe ◽  
J. Cote

Skin temperature measurements of the face have shown that the cheek cools faster than the nose and the nose faster than the forehead. The cooling effect of wind is maximum at wind speeds between 4.5 and 6.7 m/s. Cold winds produce significant bradycardia, which is, however, much more pronounced during the expiratory phase of respiration. A significant correlation was noted between cooling of face and the reflex bradycardia observed. Similarly, a very significant correlation was noted between drop in skin temperature and subjective evaluation of cold discomfort. Consequently, the drop in skin temperature, reflex bradycardia, and subjective evaluation are parameters which are directly affected by cold wind and can be used as adequate indicators of the degree of discomfort. When comparing the present results with the windchill index, it was found that in the zone described as “dangerously cold” the index fits well with the physiological measurements. In the zone described as “bitterly cold,” the index by comparison with actual skin temperature measurements and subjective evaluation underestimates the cooling effects of combined temperature and wind by approximately 10 degrees C.


Sign in / Sign up

Export Citation Format

Share Document