Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries

2016 ◽  
Vol 8 ◽  
pp. 244-256 ◽  
Author(s):  
U. Westerhoff ◽  
T. Kroker ◽  
K. Kurbach ◽  
M. Kurrat
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 769
Author(s):  
Ji’ang Zhang ◽  
Ping Wang ◽  
Yushu Liu ◽  
Ze Cheng

In the battery management system, it is important to accurately and efficiently estimate the state of charge (SOC) of lithium-ion batteries, which generally requires the establishment of a equivalent circuit model of the battery, whose accuracy and rationality play an important role in accurately estimating the state of lithium-ion batteries. The traditional single order equivalent circuit models do not take into account the changes of impedance spectrum under the action of multiple factors, nor do they take into account the balance of practicality and complexity of the model, resulting the low accuracy and poor practicability. In this paper, the theory of electrochemical impedance spectroscopy is used to guide and improve the equivalent circuit model. Based on the analysis of the variation of the high and intermediate frequency range of the impedance spectrum with the state of charge and temperature of the battery, a variable order equivalent model (VOEM) is proposed by Arrhenius equation and Bayesian information criterion (BIC), and the state equation and observation equation of VOEM are improved by autoregressive (AR) equations. Combined with the unscented Kalman filter (UKF), a SOC online estimation method is proposed, named VOEM-AR-UKF. The experimental results show that the proposed method has high accuracy and good adaptability.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.


Sign in / Sign up

Export Citation Format

Share Document