Reliability Improvement of Radial Distribution System by Optimal Placement and Sizing of Energy Storage System using TLBO

2020 ◽  
Vol 30 ◽  
pp. 101492 ◽  
Author(s):  
Preet Lata ◽  
Shelly Vadhera
Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3182
Author(s):  
Afroz Alam ◽  
Mohd Tariq ◽  
Mohammad Zaid ◽  
Preeti Verma ◽  
Marwan Alsultan ◽  
...  

There is a need for the optimal positioning of protective devices to maximize customers satisfaction per their demands. Such arrangement advances the distribution system reliability to maximum achievable. Thus, radial distribution system (RDS) reliability can be improved by placing reclosers at suitable feeder sections. This article presents comprehensive details of an attempt to determine the reclosers’ optimal location in an RDS to maximize the utility profit by reliability improvement. Assessment of different reliability indices such as SAIDI, SAIFI, CAIFI, CAIDI, etc., with recloser placement, exhibits a considerable improvement in these indices in contrast with the absence of recloser. Consequently, a new bidirectional formulation has been proposed for the optimized arrangement of reclosers’. This formulation efficiently handles the bidirectional power flow, resulting from distributed generation (DG) unit (s) in the system. The proposed model has been solved for a test system by utilizing the Genetic algorithm (GA) optimization method. Later, test results conclude that reclosers’ optimal placement contributes significantly towards utility profit with minimum investment and outage costs.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


2020 ◽  
Author(s):  
Rodrigo Zambrana Vargas ◽  
José Calixto Lopes ◽  
Juan C. Colque ◽  
José L. Azcue ◽  
Thales Sousa

With the significant increase in the insertion of wind turbines in the electrical system, the overall inertia of the system is reduced resulting in a loss of its ability to support frequency. This is because it is common to use variable speed wind turbines, based on the Double Fed Induction Generator (DFIG), which are coupled to the power grid through electronic converters, which do not have the same characteristics as synchronous generators. Thus, this paper proposes the use of the DFIG-associated Battery Energy Storage System (BESS) to support the primary frequency. A control strategy was developed, and important factors such as charging and discharging current limitations and operation within battery limits were considered. Time domain simulations have been proposed to study a distribution system containing a wind turbine, showing the advantages of BESS over frequency disturbances.


Sign in / Sign up

Export Citation Format

Share Document