CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector

2020 ◽  
Vol 30 ◽  
pp. 101528 ◽  
Author(s):  
Vivek R. Pawar ◽  
Sarvenaz Sobhansarbandi
2019 ◽  
Author(s):  
Vivek R. Pawar ◽  
Sarvenaz Sobhansarbandi

Abstract The increase in greenhouse gas and other global warming emissions makes it necessary to utilize renewable energy sources such as solar energy with high potential for heat production by means of solar thermal collectors. Among various types of solar collectors, evacuated tube solar collector (ETC) has attracted many attentions specially for the application in solar water heater systems (SWHs). However, due to the intermittence in solar intensity during the day, the ETCs may not work at their maximum functionality. There are number of studies investigating the effect of energy storage materials to eliminate the mismatch between supply and demand during peak hours. In the recent work of the authors, application of phase change materials (PCMs) integrated directly within the ETCs is studied experimentally. In this study, the computational fluid dynamics (CFD) modeling of heat pipe evacuated tube solar collector (HPETC) is performed. In order to cross-validate the obtained results to the recent experimental analysis, the boundary conditions are set as the real field-testing data. In the first part of the study, the 3D model of commercially available HPETC is simulated, while in the second part the HPETC integrated with the PCM is developed to analyze the improved thermal distribution. The selected type of PCM is Tritriacontane paraffin (C33H68), with a melting point of 72 °C and latent heat capacity of 256 kJ/kg. The simulation results show a acceptable agreement between the CFD modeling and the experimental data. The results from this study can be the benchmark for efficiency improvement of the ETCs in thermal energy storage systems.


Author(s):  
Celine S. L. Lim ◽  
Vivek R. Pawar ◽  
Sarvenaz Sobhansarbandi

Abstract Solar water heating (SWH) systems are the most common application of renewable energy technology that converts solar radiation into useful energy for domestic/industrial activities. The novelty of this study is the design of a new SWH that combines the heat transfer and storage both in a single unit. The selected type of collector for this purpose is an evacuated tube solar collector (ETC). The new design of the ETC has been developed by applying a U-tube inside the collector which contains the heat transfer fluid (HTF). The HTF flows into an external heat exchanger that transfers heat to the water. The implementation of sugar alcohol namely Erythritol (C4H10O4) as the HTF for moderate operating temperature applications was investigated. Moreover, the utilization of solid-liquid phase change material, Tritriacontane paraffin (C33H68), inside the ETC, allows direct heat storage on the system and delayed release of heat. A computational fluid dynamics (CFD) modeling of a single U-tube ETC is performed using ANSYS Fluent in stagnation (on-demand) operation. A 3D model of the ETC is developed and the appropriate boundary conditions are applied. Moreover, the thermal performance comparison of U-tube vs heat pipe ETC has been done. The results from this study shows the maximum fin temperature difference of 46°C of U-tube ETC compared with heat pipe ETC.


2021 ◽  
Vol 192 ◽  
pp. 116974
Author(s):  
Jose Miguel Maldonado ◽  
David Verez ◽  
Alvaro de Gracia ◽  
Luisa F. Cabeza

2016 ◽  
Vol 25 (2) ◽  
pp. 275-287 ◽  
Author(s):  
X. Gui ◽  
T. Li ◽  
D. Yuan ◽  
Sh. Liang ◽  
D. Tang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


Sign in / Sign up

Export Citation Format

Share Document