Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system

Solar Energy ◽  
2020 ◽  
Vol 209 ◽  
pp. 470-484 ◽  
Author(s):  
Saleh Abo-Elfadl ◽  
Hamdy Hassan ◽  
M.F. El-Dosoky
2019 ◽  
Author(s):  
Vivek R. Pawar ◽  
Sarvenaz Sobhansarbandi

Abstract The increase in greenhouse gas and other global warming emissions makes it necessary to utilize renewable energy sources such as solar energy with high potential for heat production by means of solar thermal collectors. Among various types of solar collectors, evacuated tube solar collector (ETC) has attracted many attentions specially for the application in solar water heater systems (SWHs). However, due to the intermittence in solar intensity during the day, the ETCs may not work at their maximum functionality. There are number of studies investigating the effect of energy storage materials to eliminate the mismatch between supply and demand during peak hours. In the recent work of the authors, application of phase change materials (PCMs) integrated directly within the ETCs is studied experimentally. In this study, the computational fluid dynamics (CFD) modeling of heat pipe evacuated tube solar collector (HPETC) is performed. In order to cross-validate the obtained results to the recent experimental analysis, the boundary conditions are set as the real field-testing data. In the first part of the study, the 3D model of commercially available HPETC is simulated, while in the second part the HPETC integrated with the PCM is developed to analyze the improved thermal distribution. The selected type of PCM is Tritriacontane paraffin (C33H68), with a melting point of 72 °C and latent heat capacity of 256 kJ/kg. The simulation results show a acceptable agreement between the CFD modeling and the experimental data. The results from this study can be the benchmark for efficiency improvement of the ETCs in thermal energy storage systems.


2016 ◽  
Vol 20 (1) ◽  
pp. 327-335 ◽  
Author(s):  
Farzad Jafarkazemi ◽  
Emad Ahmadifard ◽  
Hossein Abdi

In this paper, a heat pipe evacuated tube solar collector has been investigated both theoretically and experimentally. A detailed theoretical method for energy and exergy analysis of the collector is provided. The method is also evaluated by experiments. The results showed a good agreement between the experiment and theory. Using the theoretical model, the effect of different parameters on the collector?s energy and exergy efficiency has been investigated. It is concluded that inlet water temperature, inlet water mass flow rate, the transmittance of tubes and absorptance of the absorber surface have a direct effect on the energy and exergy efficiency of the heat pipe evacuated tube solar collector. Increasing water inlet temperature in heat pipe evacuated solar collectors leads to a decrease in heat transfer rate between the heat pipe?s condenser and water.


2021 ◽  
Vol 192 ◽  
pp. 116974
Author(s):  
Jose Miguel Maldonado ◽  
David Verez ◽  
Alvaro de Gracia ◽  
Luisa F. Cabeza

2000 ◽  
Vol 122 (4) ◽  
pp. 205-211 ◽  
Author(s):  
Marc A. Rosen ◽  
Ibrahim Dincer ◽  
Norman Pedinelli

The thermodynamic performance of an encapsulated ice thermal energy storage (ITES) system for cooling capacity is assessed using exergy and energy analyses. A full cycle, with charging, storing, and discharging stages, is considered. The results demonstrate how exergy analysis provides a more realistic and meaningful assessment than the more conventional energy analysis of the efficiency and performance of an ITES system. The overall energy and exergy efficiencies are 99.5 and 50.9 percent, respectively. The average exergy efficiencies for the charging, discharging, and storing periods are 86, 60, and over 99 percent, respectively, while the average energy efficiency for each of these periods exceeds 99 percent. These results indicate that energy analysis leads to misleadingly optimistic statements of ITES efficiency. The results should prove useful to engineers and designers seeking to improve and optimize ITES systems. [S0195-0738(00)00904-3]


2016 ◽  
Vol 25 (2) ◽  
pp. 275-287 ◽  
Author(s):  
X. Gui ◽  
T. Li ◽  
D. Yuan ◽  
Sh. Liang ◽  
D. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document