A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation

Author(s):  
Adarsh Abi Mathew ◽  
T. Venugopal
2021 ◽  
Vol 192 ◽  
pp. 116974
Author(s):  
Jose Miguel Maldonado ◽  
David Verez ◽  
Alvaro de Gracia ◽  
Luisa F. Cabeza

2016 ◽  
Vol 25 (2) ◽  
pp. 275-287 ◽  
Author(s):  
X. Gui ◽  
T. Li ◽  
D. Yuan ◽  
Sh. Liang ◽  
D. Tang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


2018 ◽  
Vol 177 ◽  
pp. 315-329 ◽  
Author(s):  
Shaopeng Guo ◽  
Qibin Liu ◽  
Jun Zhao ◽  
Guang Jin ◽  
Wenfei Wu ◽  
...  

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Satyapal Yadav ◽  
V. P. Chandramohan

Solar dryer with thermal energy storage device is an essential topic for food drying applications in industries. In this work, a two-dimensional (2D) numerical model is developed for the application of solar drying of agricultural products in an indirect type solar dryer. The phase-change material (PCM) used in this work is paraffin wax. The study has been performed on a single set of concentric tube which consists of a finned inner copper tube for air flow and an outer plastic tube for PCM material. The practical domain is modeled using ANSYS, and computer simulations were performed using ANSYS fluent 2015. The air velocity and temperature chosen for this study are based on the observation of indirect type solar dryer experimental setup. From this numerical analysis, the temperature distribution, melting, and solidification fraction of PCM are estimated at different air flow velocities, time, and inlet temperature of air. It is concluded that the drying operation can be performed up to 10.00 p.m. as the PCM transfers heat to inlet air up to 10.00 p.m. and before it got charged up to 3.00 p.m. because of solar radiation. The maximum outlet temperature is 341.62 K (68.62 °C) which is suitable for food drying applications. Higher air flow velocity enhances quick melting of PCM during charging time and quick cooling during recharging of inlet air; therefore, higher air flow velocity is not preferred for food drying during cooling of PCM.


Sign in / Sign up

Export Citation Format

Share Document