Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage

2022 ◽  
Vol 48 ◽  
pp. 103951
Author(s):  
Junbao Wang ◽  
Qiang Zhang ◽  
Zhanping Song ◽  
Shijin Feng ◽  
Yuwei Zhang
Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2859
Author(s):  
Haitao Li ◽  
Jingen Deng ◽  
Qiqi Wanyan ◽  
Yongcun Feng ◽  
Arnaud Regis Kamgue Lenwoue ◽  
...  

Small-spacing twin-well (SSTW) salt caverns have an extensive application prospect in thin or bedded rock salt formations due to their good performance, while they are rarely used in ultra-deep formations. The target strata depth of Pingdingshan salt mine is over 1700 m, and it is planned to apply an SSTW cavern to construct the underground gas storage (UGS). A 3D geomechanical model considering the viscoelastic plasticity of the rock mass is introduced into Flac3D to numerically study the influence of internal gas pressure, cavern upper shape and well spacing on the stability of an SSTW salt cavern for Pingdingshan UGS. A set of assessment indices is summarized for the stability of gas storage. The results show that the minimum internal gas pressure is no less than 14 MPa, and the cavern should not be operated under constant low gas pressure for a long time. The cavern with an upper height of 70 m is recommended for Pingdingshan gas storage based on the safety evaluation and maximum volume. The well spacing has a limited influence on the stability of the salt cavern in view of the volume shrinkage and safety factor. Among the values of 10 m, 20 m and 30 m, the well spacing of 20 m is recommended for Pingdingshan gas storage. In addition, when the cavern groups are constructed, the pillar width on the short axis should be larger than that on the long axis due to its greater deformation in this direction. This study provides a design reference for the construction of salt cavern gas storage in ultra-deep formations with the technology of SSTW.


Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 119815
Author(s):  
Peng Li ◽  
Yinping Li ◽  
Xilin Shi ◽  
Kai Zhao ◽  
Xin Liu ◽  
...  

2020 ◽  
Author(s):  
Xueqi Cen ◽  
Hao Zeng ◽  
Haibo Wang ◽  
Xiao Huang ◽  
Rusheng Zhang ◽  
...  

2018 ◽  
Vol 52 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Xiangsheng Chen ◽  
Yinping Li ◽  
Wei Liu ◽  
Hongling Ma ◽  
Jianli Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document