creep test
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 110)

H-INDEX

26
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
pp. 257
Author(s):  
Laura González ◽  
Álvaro Gaute ◽  
Jokin Rico ◽  
Carlos Thomas

This research analyses the strain behaviour of fibre-reinforced concrete (FRC) in the event of a creep episode. The analysis of creep experienced by FRC specimens during the test reflects better performance than that predicted by the EHE-08 standard. The authors propose a formulation for the evaluation of creep strain undergone by FRC. During the research, the evolution of the modulus of elasticity of FRC after a creep episode is analysed. After the test campaign, it can be concluded that FRC loaded at an earlier age stiffens after a creep episode. After the creep test is completed, the delayed elastic strain undergone by FRC is analysed and it is observed that FRC loaded at an earlier age undergoes less deformation. The authors propose a formulation for the evaluation of the delayed elastic strain undergone by FRC after a creep episode.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Y. Fujii ◽  
N. Ikeda ◽  
Y. Onoe ◽  
Y. Kanai ◽  
T. Hayakawa ◽  
...  

Abstract Face squeezing, floor heave, and buckling of invert were found after a 10-day holiday in 2014 around the serpentinite face of a tunnel in Hokkaido, Japan. The damage continued for over 2 months, extending 400 m toward the entrance causing a massive roof fall. The tunnel was excavated again with a circular section and extra-thick shotcrete, and the face had crossed the damaged part 6 years after the damage occurred. Uniaxial and triaxial compression tests were carried out to obtain the mechanical properties of the serpentinite to clarify the severe damage mechanism at the tunnel. The main experimental findings are as follows. The uniaxial compressive strength of the serpentinite samples was very low, and the ratio of the strength to the estimated overburden pressure was extremely low. The parameter n indicated that the time-dependent deformation of the serpentinite was not large but the same as ordinary rocks. All specimens showed strain-hardening in the triaxial compression test, and the friction angle was very low by the brucite content. Only primary creep was observed in the multistage triaxial creep test. The pressure on the shotcrete from rock mass for the damaged tunnel was enough to cause creep deformation and failure of shotcrete. From the above findings, designing the concrete lining that can support the earth and water pressure is recommended for tunnel excavation in such a weak serpentinite rock mass, particularly with a very low friction angle by brucite. Highlights Face squeezing, floor heave, and buckling of invert were found after a 10-day holiday around the serpentinite face in Hokkaido, Japan. The time-dependent deformation of the serpentinite was not large but the same as ordinary rocks. All specimens showed strain-hardening in the triaxial compression test, and the friction angle was very low by the brucite content. Only primary creep was observed in the multistage triaxial creep test. The severe damage to the tunnel was not a brittle creep failure of the serpentinite rock mass itself but the shotcrete lining.


Author(s):  
Oscar Öhlin ◽  
Guocai Chai ◽  
Raveendra Siriki

AbstractSandvik 3R60™ is an AISI 316/316L type of stainless steel. In this paper, the structural stability of the material under long-term ageing or creep test has been studied. The material had been creep tested with a stress of 45 MPa at 700 °C. The predicted rupture time for the creep specimen was about 100,000 h; however, the specimen broke first after 240,131 h. The oxidation behavior and structural stability in both aged and creep-tested samples were studied using SEM/EDS, EBSD and ECCI techniques. Thin oxide layers near the sample surface are mainly spinel oxides and eskolaite (Cr2O3). Sigma phase, χ-phase, Eta phase, M23C6 and Cr2N have been observed in the matrix of the samples. In the crept sample, the amount of sigma phase has increased, so has Eta phase and χ-phase as well. Thermo-Calc evaluation can reasonably predict precipitation of sigma phase, Eta phase and M23C6, but not χ-phase and Cr2N phases. Creep crack initiation behavior has been studied. It is mainly noticed to start at surface oxide layer or coarse sigma particles at grain boundary or triple point. Additionally, it is also observed that the presence of a thin Cr2O3 layer between the oxide and matrix along with discontinuous sigma phase distribution at grain boundary that will reduce the risk for creep crack initiation. Further, the crack propagation behavior has also been discussed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Junguang Wang ◽  
Qingrong Yu ◽  
Bing Liang ◽  
Zhangqing Xuan

In the in situ modified fluidized mining engineering, the surrounding rock of the shaft wall is prone to creep instability damage under the action of disturbance and seepage water pressure, which seriously affects the stability of the surrounding rock of the deep in situ modified fluidized mining. In order to study the nonlinear creep damage and fracture characteristics of deep rocks under the combined action of seepage water pressure and disturbance load, a self-developed rock perturbation creep test rig under the action of seepage water pressure was used, and shale was used as the rock sample. In the method of staged loading, the rock uniaxial compression perturbation creep test under static axial pressure, different perturbation frequencies, and different seepage water pressures was carried out, and the creep characteristics of shale under the combined action of perturbation and seepage were studied. The results show that with the increase of seepage water pressure, the creep failure time of the rock decreases, and the ultimate strain value increases; with the increase of the disturbance frequency, the creep failure mode of the rock gradually transitions from shear failure to tension failure. When water pressure and disturbance load exist at the same time, rock creep is more sensitive to seepage water pressure; based on experimental results, a shale perturbation creep damage model considering the influence of seepage water pressure and disturbance frequency is established, and the model is verified. The research results have important theoretical significance for guiding the wellbore stability control of in situ modified fluidized mining engineering.


Author(s):  
Murat Gökçe ◽  

The paper aims to design a concrete against repetitive impact and abrasion resistance. Macro/micro steel fibers and two types of crushed stone based on limestone and corundum as aggregate were used in concrete mixtures. Impact test device has been modified, designed and used for impact strength testing of concrete. The usability of the plate creep test in determining the impact strength of concrete was also investigated. According to the test results, a high correlation was found between the abrasion, impact resistance tests and the creep test.


2021 ◽  
Author(s):  
Malwina Wilding ◽  
Michael McMurtrey ◽  
Anthony Crawford ◽  
Wesley Jones ◽  
Hollis Woodbury ◽  
...  

Author(s):  
Yu Li ◽  
Sheng Qiang ◽  
Chao Xu ◽  
Wenqiang Xu ◽  
Jiayu Lai ◽  
...  

Under long-term load, the creep deformation of concrete materials has a serious impact on the structural safety of hydraulic structures, especially under the action of ultra-high stress levels, the concrete materials will undergo nonlinear creep, which is extremely easy to cause structural damage. In this study, the uniaxial nonlinear creep test of concrete specimens was used to establish the damage index based on the wave velocity value of ultrasonic flaw detection, and the creep and damage degree curve of the concrete specimen were obtained. The ideal elastic element, the Kelvin body, and the nonlinear viscoplastic element are connected in series, and a new viscoelastic–plastic model considering the creep characteristics of concrete is proposed. Based on the principle of least squares, the Levenberg–Marquardt (LM) algorithm is used to inverse the parameters of the nonlinear creep test. In addition, the model is verified by the measured data of linear creep. At the same time, the sensitivity of each model parameter is analyzed. The research shows that the LM algorithm can give the fitting parameters of the model better and faster, and the fitting values of the model are similar to the experimental results. The sensitivity analysis of the parameters shows that the proposed model has good stability and good adaptability. The model has a more accurate description of the various stages of creep, and may be conveniently applied to concrete creep calculations in actual projects.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1609
Author(s):  
Karl-Fredrik Nilsson ◽  
Daniele Baraldi ◽  
Stefan Holmström ◽  
Igor Simonovski

This paper presents a finite element analysis of the small punch creep test for 316L(N), which is compared with experimental data for 650 and 700 °C. Special emphasis is placed on (i) assessing the influence of friction and (ii) comparing two different creep models: the simple Norton creep and the more general creep model. The computed normalized deflection rate versus time is almost identical for all cases, which allows for scaling of the results. The computed time to rupture increases linearly with the friction coefficient due to a reduction in the mean stress. There is a good overall agreement between the experimental values and the computed deflection rate for a friction coefficient of around 0.3. It is shown that the initial reduction in deflection rate is due to stress relaxation and homogenization, and is only marginally affected by primary creep hardening. The computed results are compared with the equivalent stress and strain rates in the recently published small punch standard (EN 10371). The computed von Mises stresses at minimum deflection decrease linearly with the friction coefficient but are consistently slightly higher than the equivalent stress in the standard. For the strain rates, the computed values are significantly higher than the equivalent values in the standard. The presented simulations give a deeper insight of the small punch creep and impact of key parameters such the friction coefficient and in general as a guidance to refinement and improvement of the empirically based formulae in the standard.


Sign in / Sign up

Export Citation Format

Share Document