Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system

2010 ◽  
Vol 37 (12) ◽  
pp. 8566-8574 ◽  
Author(s):  
Kuntal Maji ◽  
Dilip Kumar Pratihar
2011 ◽  
Vol 383-390 ◽  
pp. 1062-1070
Author(s):  
Adeel H. Suhail ◽  
N. Ismail ◽  
S.V. Wong ◽  
N.A. Abdul Jalil

The selection of machining parameters needs to be automated, according to its important role in machining process. This paper proposes a method for cutting parameters selection by fuzzy inference system generated using fuzzy subtractive clustering method (FSCM) and trained using an adaptive network based fuzzy inference system (ANFIS). The desired surface roughness (Ra) was entered into the first step as a reference value for three fuzzy inference system (FIS). Each system determine the corresponding cutting parameters such as (cutting speed, feed rate, and depth of cut). The interaction between these cutting parameters were examined using new sets of FIS models generated and trained for verification purpose. A new surface roughness value was determined using the cutting parameters resulted from the first steps and fed back to the comparison unit and was compared with the desired surface roughness and the optimal cutting parameters ( which give the minimum difference between the actual and predicted surface roughness were find out). In this way, single input multi output ANFIS architecture presented which can identify the cutting parameters accurately once the desired surface roughness is entered to the system. The test results showed that the proposed model can be used successfully for machinability data selection and surface roughness prediction as well.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 922 ◽  
Author(s):  
C. J. Luis Pérez

Technological tables are very important in electrical discharge machining to determine optimal operating conditions for process variables, such as material removal rate or electrode wear. Their determination is of great industrial importance and their experimental determination is very important because they allow the most appropriate operating conditions to be selected beforehand. These technological tables are usually employed for electrical discharge machining of steel, but their number is significantly less in the case of other materials. In this present research study, a methodology based on using a fuzzy inference system to obtain these technological tables is shown with the aim of being able to select the most appropriate manufacturing conditions in advance. In addition, a study of the results obtained using a fuzzy inference system for modeling the behavior of electrical discharge machining parameters is shown. These results are compared to those obtained from response surface methodology. Furthermore, it is demonstrated that the fuzzy system can provide a high degree of precision and, therefore, it can be used to determine the influence of these machining parameters on technological variables, such as roughness, electrode wear, or material removal rate, more efficiently than other techniques.


Tehnika ◽  
2021 ◽  
Vol 76 (3) ◽  
pp. 318-325
Author(s):  
Marin Gostimirović ◽  
Dragan Rodić ◽  
Milenko Sekulić

Quality and productivity are two most important performances of electrical discharge machining (EDM). This paper presents the application of a fuzzy inference system (FIS) for prediction of machining quality in the EDM process. Specifically, the FIS conducted modeling of geometrical accuracy and surface finish of EDM machined parts. With the fuzzy inference system model, the input variables are discharge current and pulse duration, while the output parameters are gap distance between the electrodes and surface roughness of the workpiece. The performance of the proposed FIS provides a more effective selection of the EDM input values, which leads to better machining conditions and quality of the final product. The fuzzy inference system based modeling of the EDM process showed a very good agreement compared to the experimental data.


2021 ◽  
pp. 004051752110205
Author(s):  
Xueqing Zhao ◽  
Ke Fan ◽  
Xin Shi ◽  
Kaixuan Liu

Virtual reality is a technology that allows users to completely interact with a computer-simulated environment, and put on new clothes to check the effect without taking off their clothes. In this paper, a virtual fit evaluation of pants using the Adaptive Network Fuzzy Inference System (ANFIS), VFE-ANFIS for short, is proposed. There are two stages of the VFE-ANFIS: training and evaluation. In the first stage, we trained some key pressure parameters by using the VFE-ANFIS; these key pressure parameters were collected from real try-on and virtual try-on of pants by users. In the second stage, we evaluated the fit by using the trained VFE-ANFIS, in which some key pressure parameters of pants from a new user were determined and we output the evaluation results, fit or unfit. In addition, considering the small number of input samples, we used the 10-fold cross-validation method to divide the data set into a training set and a testing set; the test accuracy of the VFE-ANFIS was 94.69% ± 2.4%, and the experimental results show that our proposed VFE-ANFIS could be applied to the virtual fit evaluation of pants.


Sign in / Sign up

Export Citation Format

Share Document