An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints

2004 ◽  
Vol 12 (1) ◽  
pp. 77-98 ◽  
Author(s):  
Sanyou Y. Zeng ◽  
Lishan S. Kang ◽  
Lixin X. Ding

In this paper, an orthogonal multi-objective evolutionary algorithm (OMOEA) is proposed for multi-objective optimization problems (MOPs) with constraints. Firstly, these constraints are taken into account when determining Pareto dominance. As a result, a strict partial-ordered relation is obtained, and feasibility is not considered later in the selection process. Then, the orthogonal design and the statistical optimal method are generalized to MOPs, and a new type of multi-objective evolutionary algorithm (MOEA) is constructed. In this framework, an original niche evolves first, and splits into a group of sub-niches. Then every sub-niche repeats the above process. Due to the uniformity of the search, the optimality of the statistics, and the exponential increase of the splitting frequency of the niches, OMOEA uses a deterministic search without blindness or stochasticity. It can soon yield a large set of solutions which converges to the Pareto-optimal set with high precision and uniform distribution. We take six test problems designed by Deb, Zitzler et al., and an engineering problem (W) with constraints provided by Ray et al. to test the new technique. The numerical experiments show that our algorithm is superior to other MOGAS and MOEAs, such as FFGA, NSGAII, SPEA2, and so on, in terms of the precision, quantity and distribution of solutions. Notably, for the engineering problem W, it finds the Pareto-optimal set, which was previously unknown.

2009 ◽  
Vol 17 (3) ◽  
pp. 411-436 ◽  
Author(s):  
Lothar Thiele ◽  
Kaisa Miettinen ◽  
Pekka J. Korhonen ◽  
Julian Molina

In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point consisting of desirable aspiration levels for objective functions. The information is used in an evolutionary algorithm to generate a new population by combining the fitness function and an achievement scalarizing function. In multi-objective optimization, achievement scalarizing functions are widely used to project a given reference point into the Pareto optimal set. In our approach, the next population is thus more concentrated in the area where more preferred alternatives are assumed to lie and the whole Pareto optimal set does not have to be generated with equal accuracy. The approach is demonstrated by numerical examples.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


Author(s):  
Poya Khalaf ◽  
Hanz Richter ◽  
Antonie J. van den Bogert ◽  
Dan Simon

We design a control system for a prosthesis test robot that was previously developed for transfemoral prosthesis design and test. The robot’s control system aims to mimic human walking in the sagittal plane. It has been seen in previous work that trajectory control alone fails to produce human-like forces. Therefore, we utilize an impedance controller to achieve reasonable tracking of motion and force simultaneously. However, these objectives conflict. Impedance control design can therefore be viewed as a multi-objective optimization problem. We use an evolutionary multi-objective strategy called Multi-Objective Invasive Weed Optimization (MOIWO) to design the impedance controller. The multi-objective optimization problem admits a set of equally valid alternative solutions known as the Pareto optimal set. We use a pseudo weight vector approach to select a single solution from the Pareto optimal set. Simulation results show that a solution that is selected for pure motion tracking performs very accurate motion tracking (RMS error of 0.06 cm) but fails to produce the desired forces (RMS error of 70% peak load). On the other hand, a solution that is selected for pure force tracking successfully tracks the desired force (RMS error of 12.7% peak load) at the expense of motion trajectory errors (RMS error of 4.5 cm).


Author(s):  
Nguye Long ◽  
Bui Thu Lam

Multi-objectivity has existed in many real-world optimization problems. In most multi-objective cases, objectives are often conflicting, there is no single solution being optimal with regards to all objectives. These problems are called Multi-objective Optimization Problems (MOPs). To date, there have been al large number of methods for solving MOPs including evolutionary methods (namly Multi-objective Evolutionary Algorithms MOEAs). With the use of a population of solutions for searching. MOEAs are naturally suitable for approximating optimal solutions (called the Pareto Optimal Set (POS) or the efficient set). There has been a popular trend in MOEAs considering the role of Decision Makers (DMs) during the optimization process (known as the human-in-loop) for checking, analyzing the results and giving the preference to guide the optimization process. This is call the interactive method.


2011 ◽  
Vol 38 (7) ◽  
pp. 8045-8053 ◽  
Author(s):  
Luis M. Torres-Treviño ◽  
Felipe A. Reyes-Valdes ◽  
Victor López ◽  
Rolando Praga-Alejo

2021 ◽  
Vol 60 ◽  
pp. 100795
Author(s):  
Rui Wang ◽  
Nan-Jiang Dong ◽  
Dun-Wei Gong ◽  
Zhong-Bao Zhou ◽  
Shi Cheng ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Ł. Szparaga ◽  
J. Ratajski

ABSTRACT The multi-objective optimization procedure of geometry of TiAlN/TiN/Cr multilayer coatings was created. The procedure was applied to the multilayer coatings subjected to constant tangential and normal loads (Hertzian contact). In physical model Cr, TiN and TiAlN layers were treated as a continuous medium, thus in mathematical description of the stress and strain states in the coatings a classical theory of stiffness was used. Decisional variables used in procedure were thicknesses of Cr, TiN and TiAlN layers and decisional criteria were functions of the stress and strain fields in the coating and substrate. Using created optimization procedure, Pareto set of optimal values of layers' thicknesses were determined. Additionally, two methods of analysis of Pareto-optimal set were introduced and discussed.


Sign in / Sign up

Export Citation Format

Share Document