Solving Expensive Multi-Objective Optimization Problems by Kriging Model with Multi-Point Updating Strategy

2014 ◽  
Vol 685 ◽  
pp. 667-670 ◽  
Author(s):  
Ding Han ◽  
Jian Rong Zheng

A method which utilizes Kriging model and a multi-point updating strategy is put forward for solving expensive multi-objective optimization problems. Assisted by a defined cheaper multi-objective optimization problem and a maximum average distance criterion, multiple updating points can be found. The proposed method is tested on two numerical functions and a ten-bar truss problem, the results show that the proposed method is efficient in obtaining Pareto optimal solutions with good convergence and diversity when the same computation resource is used comparing with two other methods.

Author(s):  
Ruhul A. Sarker ◽  
Hussein A. Abbass ◽  
Charles S. Newton

Being capable of finding a set of pareto-optimal solutions in a single run is a necessary feature for multi-criteria decision making, Evolutionary algorithms (EAs) have attracted many researchers and practitioners to address the solution of Multi-objective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multi-objective optimization problems. Despite the overwhelming number of Multi-objective Evolutionary Algorithms (MEAs) in the literature, little work has been done to identify the best MEA using an appropriate assessment methodology. In this chapter, we compare our algorithm with twelve other well-known MEAs, using a popular assessment methodology, by solving two benchmark problems. The comparison shows the superiority of our algorithm over others.


2008 ◽  
Vol 17 (03) ◽  
pp. 499-512 ◽  
Author(s):  
C. K. PANIGRAHI ◽  
R. CHAKRABARTI ◽  
P. K. CHATTOPADHYAY

Multi-objective differential evolution (MODE) is proposed to handle economic environmental dispatch problem, which is a multi-objective optimization problem (MOOPs) with competing and noncommensurable objectives. The proposed approach has a good performance in finding a diverse set of solutions and in converging near the true Pareto-optimal set. Numerical results for two sample test systems have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions of economic environmental dispatch problem in one single run. Simulation results with the proposed approach have been validated with Non-dominated Sorting Genetic Algorithm-II.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 839
Author(s):  
Ibrahim M. Abu-Reesh

Microbial fuel cells (MFCs) are a promising technology for bioenergy generation and wastewater treatment. Various parameters affect the performance of dual-chamber MFCs, such as substrate flow rate and concentration. Performance can be assessed by power density ( PD ), current density ( CD ) production, or substrate removal efficiency ( SRE ). In this study, a mathematical model-based optimization was used to optimize the performance of an MFC using single- and multi-objective optimization (MOO) methods. Matlab’s fmincon and fminimax functions were used to solve the nonlinear constrained equations for the single- and multi-objective optimization, respectively. The fminimax method minimizes the worst-case of the two conflicting objective functions. The single-objective optimization revealed that the maximum PD ,   CD , and SRE were 2.04 W/m2, 11.08 A/m2, and 73.6%, respectively. The substrate concentration and flow rate significantly impacted the performance of the MFC. Pareto-optimal solutions were generated using the weighted sum method for maximizing the two conflicting objectives of PD and CD in addition to PD and SRE   simultaneously. The fminimax method for maximizing PD and CD showed that the compromise solution was to operate the MFC at maximum PD conditions. The model-based optimization proved to be a fast and low-cost optimization method for MFCs and it provided a better understanding of the factors affecting an MFC’s performance. The MOO provided Pareto-optimal solutions with multiple choices for practical applications depending on the purpose of using the MFCs.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 465 ◽  
Author(s):  
Peng Ni ◽  
Jiale Gao ◽  
Yafei Song ◽  
Wen Quan ◽  
Qinghua Xing

In the real world, multi-objective optimization problems always change over time in most projects. Once the environment changes, the distribution of the optimal solutions would also be changed in decision space. Sometimes, such change may obey the law of symmetry, i.e., the minimum of the objective function in such environment is its maximum in another environment. In such cases, the optimal solutions keep unchanged or vibrate in a small range. However, in most cases, they do not obey the law of symmetry. In order to continue the search that maintains previous search advantages in the changed environment, some prediction strategy would be used to predict the operation position of the Pareto set. Because of this, the segment and multi-directional prediction is proposed in this paper, which consists of three mechanisms. First, by segmenting the optimal solutions set, the prediction about the changes in the distribution of the Pareto front can be ensured. Second, by introducing the cloud theory, the distance error of direction prediction can be offset effectively. Third, by using extra angle search, the angle error of prediction caused by the Pareto set nonlinear variation can also be offset effectively. Finally, eight benchmark problems were used to verify the performance of the proposed algorithm and compared algorithms. The results indicate that the algorithm proposed in this paper has good convergence and distribution, as well as a quick response ability to the changed environment.


2015 ◽  
Vol 32 (05) ◽  
pp. 1550036 ◽  
Author(s):  
Chun-An Liu ◽  
Yuping Wang ◽  
Aihong Ren

For dynamic multi-objective constrained optimization problem (DMCOP), it is important to find a sufficient number of uniformly distributed and representative dynamic Pareto optimal solutions. In this paper, the time period of the DMCOP is first divided into several random subperiods. In each random subperiod, the DMCOP is approximately regarded as a static optimization problem by taking the time subperiod fixed. Then, in order to decrease the amount of computation and improve the effectiveness of the algorithm, the dynamic multi-objective constrained optimization problem is further transformed into a dynamic bi-objective constrained optimization problem based on the dynamic mean rank variance and dynamic mean density variance of the evolution population. The evolution operators and a self-check operator which can automatically checkout the change of time parameter are introduced to solve the optimization problem efficiently. And finally, a dynamic multi-objective constrained optimization evolutionary algorithm is proposed. Also, the convergence analysis for the proposed algorithm is given. The computer simulations are made on four dynamic multi-objective optimization test functions and the results demonstrate that the proposed algorithm can effectively track and find the varying Pareto optimal solutions or the varying Pareto fronts with the change of time.


2016 ◽  
Vol 0 (0) ◽  
pp. 5-11
Author(s):  
Andrzej Ameljańczyk

The paper presents a method of algorithms acceleration for determining Pareto-optimal solutions (Pareto Front) multi-criteria optimization tasks, consisting of pre-ordering (presorting) set of feasible solutions. It is proposed to use the generalized Minkowski distance function as a presorting tool that allows build a very simple and fast algorithm Pareto Front for the task with a finite set of feasible solutions.


Sign in / Sign up

Export Citation Format

Share Document