scholarly journals Nonlinear optimal large-scale structures in turbulent channel flow

2018 ◽  
Vol 72 ◽  
pp. 74-86 ◽  
Author(s):  
M. Farano ◽  
S. Cherubini ◽  
P. De Palma ◽  
J.-C. Robinet
2009 ◽  
Author(s):  
Elteyeb Eljack ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

2016 ◽  
Vol 802 ◽  
Author(s):  
Yongyun Hwang ◽  
Ashley P. Willis ◽  
Carlo Cossu

Understanding the origin of large-scale structures in high-Reynolds-number wall turbulence has been a central issue over a number of years. Recently, Rawat et al. (J. Fluid Mech., vol. 782, 2015, pp. 515–540) have computed invariant solutions for the large-scale structures in turbulent Couette flow at $Re_{\unicode[STIX]{x1D70F}}\simeq 128$ using an overdamped large-eddy simulation with the Smagorinsky model to account for the effect of the surrounding small-scale motions. Here, we extend this approach to Reynolds numbers an order of magnitude higher in turbulent channel flow, towards the regime where the large-scale structures in the form of very-large-scale motions (long streaky motions) and large-scale motions (short vortical structures) emerge energetically. We demonstrate that a set of invariant solutions can be computed from simulations of the self-sustaining large-scale structures in the minimal unit (domain of size $L_{x}=3.0h$ streamwise and $L_{z}=1.5h$ spanwise) with midplane reflection symmetry at least up to $Re_{\unicode[STIX]{x1D70F}}\simeq 1000$. By approximating the surrounding small scales with an artificially elevated Smagorinsky constant, a set of equilibrium states are found, labelled upper- and lower-branch according to their associated drag. It is shown that the upper-branch equilibrium state is a reasonable proxy for the spatial structure and the turbulent statistics of the self-sustaining large-scale structures.


2018 ◽  
Vol 850 ◽  
pp. 733-768 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia ◽  
Sadayoshi Toh

Direct numerical simulations are used to examine large-scale motions with a streamwise length$2\sim 4h$($h$denotes the channel half-width) in the logarithmic and outer regions of a turbulent channel flow. We test a minimal ‘streamwise’ flow unit (Toh & Itano,J. Fluid Mech., vol. 524, 2005, pp. 249–262) (or MSU) for larger Kármán numbers ($h^{+}=395$and 1020) than in the original work. This flow unit consists of a sufficiently long (${L_{x}}^{+}\approx 400$) streamwise domain to maintain near-wall turbulence (Jiménez & Moin,J. Fluid Mech., vol. 225, 1991, pp. 213–240) and a spanwise domain which is large enough to represent the spanwise behaviour of inner and outer structures correctly; as$h^{+}$increases, the streamwise extent of the MSU domain decreases with respect to$h$. Particular attention is given to whether the spanwise organization of the large-scale structures may be represented properly in this simplified system at sufficiently large$h^{+}$and how these structures are associated with the mean streamwise velocity$\overline{U}$. It is shown that, in the MSU, the large-scale structures become approximately two-dimensional at$h^{+}=1020$. In this case, the streamwise velocity fluctuation$u$is energized, whereas the spanwise velocity fluctuation$w$is weakened significantly. Indeed, there is a reduced energy redistribution arising from the impaired global nature of the pressure, which is linked to the reduced linear–nonlinear interaction in the Poisson equation (i.e. the rapid pressure). The logarithmic dependence of$\overline{ww}$is also more evident due to the reduced large-scale spanwise meandering. On the other hand, the spanwise organization of the large-scale$u$structures is essentially identical for the MSU and large streamwise domain (LSD). One discernible difference, relative to the LSD, is that the large-scale structures in the MSU are more energized in the outer region due to a reduced turbulent diffusion. In this region, there is a tight coupling between neighbouring structures, which yields antisymmetric pairs (with respect to centreline) of large-scale structures with a spanwise spacing of approximately$3h$; this is intrinsically identical with the outer energetic mode in the optimal transient growth of perturbations (del Álamo & Jiménez,J. Fluid Mech., vol. 561, 2006, pp. 329–358).


2004 ◽  
Vol 126 (5) ◽  
pp. 835-843 ◽  
Author(s):  
Hiroyuki Abe ◽  
Hiroshi Kawamura ◽  
Haecheon Choi

Direct numerical simulation of a fully developed turbulent channel flow has been carried out at three Reynolds numbers, 180, 395, and 640, based on the friction velocity and the channel half width, in order to investigate very large-scale structures and their effects on the wall shear-stress fluctuations. It is shown that very large-scale structures exist in the outer layer and that they certainly contribute to inner layer structures at high Reynolds number. Moreover, it is revealed that very large-scale structures exist even in the wall shear-stress fluctuations at high Reynolds number, which are essentially associated with the very large-scale structures in the outer layer.


Sign in / Sign up

Export Citation Format

Share Document