scholarly journals Retraction notice to: “Competing instabilities of rotating boundary-layer flows in an axial free-stream” [Eur. J. Mech. B Fluids, 61P2 (2016) 316–320]

2022 ◽  
Vol 91 ◽  
pp. 202
Author(s):  
Zahir Hussain
2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


1998 ◽  
Author(s):  
R. E. Mayle

A theory is presented for predicting the production rate of turbulent spots. The theory, based on that by Mayle-Schulz for bypass transition, leads to a new correlation for the spot production rate in boundary layer flows with a zero pressure gradient. The correlation, which agrees reasonably well with data, clearly shows the effects of both free-stream turbulence level and length scale. In addition, the theory provides an estimate for the lowest level of free-stream turbulence causing bypass transition.


1995 ◽  
Author(s):  
Anestis I. Kalfas ◽  
Robin L. Elder

This paper considers the effects of free stream turbulence intensity on intermittent boundary layer flows related to turbomachinery. The present experimental investigation has been undertaken under free stream flow conditions dominated by grid generated turbulence and Reynolds numbers appropriate for turbomachinery applications. Unseparated flow transition in the boundary layer has been considered using a flat plate with the C4 leading edge which has been designed to avoid laminar separation. This configuration provided the opportunity to study the effect of a realistic turbomachinery leading edge shape on transition. Boundary layer type hot-wire probes have been used in order to acquire detailed information about the effect of the free stream conditions and the leading edge configuration on the structure of the boundary layer. Furthermore, information about the intermittency distribution throughout the boundary layer has been obtained using statistical analysis of the velocity record of the flow field.


1999 ◽  
Vol 121 (3) ◽  
pp. 588-593 ◽  
Author(s):  
R. E. Mayle

A theory is presented for predicting the production rate of turbulent spots. The theory, based on that by Mayle–Schulz for bypass transition, leads to a new correlation for the spot production rate in boundary layer flows with a zero pressure gradient. The correlation, which agrees reasonably well with data, clearly shows the effects of both free-stream turbulence level and length scale. In addition, the theory provides an estimate for the lowest level of free-stream turbulence causing bypass transition.


2009 ◽  
Vol 618 ◽  
pp. 209-241 ◽  
Author(s):  
LARS-UVE SCHRADER ◽  
LUCA BRANDT ◽  
DAN S. HENNINGSON

Receptivity in three-dimensional boundary-layer flow to localized surface roughness and free-stream vorticity is studied. A boundary layer of Falkner–Skan–Cooke type with favourable pressure gradient is considered to model the flow slightly downstream of a swept-wing leading edge. In this region, stationary and travelling crossflow instability dominates over other instability types. Three scenarios are investigated: the presence of low-amplitude chordwise localized, spanwise periodic roughness elements on the plate, the impingement of a weak vortical free-stream mode on the boundary layer and the combination of both disturbance sources. Three receptivity mechanisms are identified: steady receptivity to roughness, unsteady receptivity to free-stream vorticity and unsteady receptivity to vortical modes scattered at the roughness. Both roughness and vortical modes provide efficient direct receptivity mechanisms for stationary and travelling crossflow instabilities. We find that stationary crossflow modes dominate for free-stream turbulence below a level of about 0.5%, whereas higher turbulence levels will promote the unsteady receptivity mechanism. Under the assumption of small amplitudes of the roughness and the free-stream disturbance, the unsteady receptivity process due to scattering of free-stream vorticity at the roughness has been found to give small initial disturbance amplitudes in comparison to the direct mechanism for free-stream modes. However, in many environments free-stream vorticity and roughness may excite interacting unstable stationary and travelling crossflow waves. This nonlinear process may rapidly lead to large disturbance amplitudes and promote transition to turbulence.


1989 ◽  
Vol 206 ◽  
pp. 265-297 ◽  
Author(s):  
B. L. Jensen ◽  
B. M. Sumer ◽  
J. Fredsøe

This study deals with turbulent oscillatory boundary-layer flows over both smooth and rough beds. The free-stream flow is a purely oscillating flow with sinusoidal velocity variation. Mean and turbulence properties were measured mainly in two directions, namely in the streamwise direction and in the direction perpendicular to the bed. Some measurements were made also in the transverse direction. The measurements were carried out up to Re = 6 × 106 over a mirror-shine smooth bed and over rough beds with various values of the parameter a/ks covering the range from approximately 400 to 3700, a being the amplitude of the oscillatory free-stream flow and ks the Nikuradse's equivalent sand roughness. For smooth-bed boundary-layer flows, the effect of Re is discussed in greater detail. It is demonstrated that the boundary-layer properties change markedly with Re. For rough-bed boundary-layer flows, the effect of the parameter a/ks is examined, at large values (O(103)) in combination with large Re.


Author(s):  
Paul Griffiths ◽  
Stephen J. Garrett ◽  
Sharon O. Stephen

Sign in / Sign up

Export Citation Format

Share Document