rough beds
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Reza Estakhr ◽  
Ali Mahdavi Mazdeh ◽  
Mohammad Hossein Omid

Abstract In this study, the effect of bed-load movement on mean flow characteristics was evaluated in two rigid rectangular flumes. The experiments consisted of creating flow conditions carrying sediments with mean diameters of D50 = 0.5, 0.6, and 2.84 mm over both smooth and rough beds. Various sediment concentrations were injected at the upstream end of the flume at non-deposit injection rates to study the effect of various concentrations on flow resistance. The effect of sediment movement on flow resistance was examined by comparing the results with those of clear water flows (without sediment injection on both smooth and rough beds). The results showed that the sediment transport in maximum injection rate may increase the friction factor up to 50 and 58 percent for smooth bed, and up to about 75 and 80 percent in rough bed with mean diameter of 0.5 and 0.6 mm. Besides, for D50 = 2.84 mm, the friction factor decreased in smooth bed and increased up to 50 percent in rough bed. In general, it can be concluded that bed-load transport can be increased by the flow friction factor. The results also showed that bed-loads may decrease the average velocity and increase shear velocity with extraction of momentum from the flow, which both of mentioned factors may increase the flow friction factor. Raising the bed-load concentration in the flow may increase the elevation of the friction factor, approaching a constant value after reaching to the aggregation threshold and generation of bed forms.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1460
Author(s):  
Reza Nasrollahpour ◽  
Mohamad Hidayat Jamal ◽  
Zulhilmi Ismail ◽  
Zulkiflee Ibrahim ◽  
Mazlin Jumain ◽  
...  

In most practical cases, density-driven currents flow over surfaces that are not smooth; however, the effects of bottom roughness on these currents have not been fully understood yet. Hence, this study aims to examine the velocity structure of density currents while propagating over rough beds. To this end, alterations in the vertical velocity profiles within the body of these currents were investigated in the presence of different bottom roughness configurations. Initially, laboratory experiments were carried out for density currents flowing over a smooth surface to provide a baseline for comparison. Thereafter, seven bottom roughness configurations were tested, encompassing both dense and sparse bottom roughness. The bottom roughness consisted of repeated arrays of square cross-section beams covering the full channel width and perpendicular to the flow direction. The primary results indicate that the bottom roughness decelerated the currents and modified the shape of velocity profiles, particularly in the region close to the bed. Additionally, a critical spacing of the roughness elements was detected for which the currents demonstrated the lowest velocities. For the spacings above the critical value, increasing the distance between the roughness elements had little impact on controlling the velocity of these currents. Moreover, using dimensional analysis, equations were developed for estimating the mean velocities of the currents flowing over various configurations of the bottom roughness. The findings of this research could contribute towards better parameterization and improved knowledge of density currents flowing over rough beds. This can lead to a better prediction of the evolution of these currents in many practical cases as well as improved planning and design measures for the control of such currents.


2021 ◽  
Vol 220 ◽  
pp. 104403
Author(s):  
Carla Faraci ◽  
Rosaria Ester Musumeci ◽  
Massimiliano Marino ◽  
Alessia Ruggeri ◽  
Lilia Carlo ◽  
...  
Keyword(s):  

Author(s):  
Clarence E. Choi ◽  
George Robert Goodwin

Steep-creek beds are macroscopically rough. This roughness causes channelised flow material to decelerate and dissipate energy, which are accounted for by depth-averaged mobility models (DMM). However, practical DMM implementations do not explicitly account for grain-scale basal interactions which influence macroscopic flow dynamics. In this study, we model flows using physical tests with smooth and macroscopically rough bases, and hence evaluate Discrete Element Method (DEM) and DMM models. A scaling effect is identified relating to roughened beds: increasing the number of grains per unit depth tends to suppress dispersion, such that small-scale flows on smooth beds resemble large-scale flows on roughened beds, at least in terms of bulk density. Furthermore, the DEM shows that rougher beds reduce the peak bulk density by up to 15% compared to a smooth bed. Rough beds increase the vertical momentum transfer tenfold, compared to smooth ones. The DMM cannot account for density change or vertical momentum, so DMM flow depths are underestimated by 90% at the flow front and 20% in the body. The Voellmy model implicitly captures internal energy dissipation for flows on rough beds. The parameter ξ can allow velocity reductions due to rough beds observed in the DEM to be captured.


2021 ◽  
Author(s):  
Massimiliano Marino ◽  
Carla Faraci ◽  
Rosaria Ester Musumeci

<p>In the present work, an investigation on the hydrodynamics of waves and currents interacting at right angle over rough beds has been carried out. The work focuses on the effects of wave motion superposed on the current steady boundary layer, and on how the oscillatory flow affects the current velocity distribution, in the presence of gravel and sand beds.</p><p>A laboratory experimental campaign on wave-current orthogonal interaction has been carried out in a shallow water basin at DHI Water and Environment (Hørsholm, Denmark).</p><p>Mean flow has been investigated by computing time- and space-averaged velocity profiles. Friction velocity and equivalent roughness have been inferred from the velocity profiles by best fit technique, in order to measure the shear stress experienced by the current mean flow.</p><p>Tests in the presence of only current, only waves and combined flow have been performed.</p><p>Instantaneous velocities have been Reynolds-averaged to obtain turbulent fluctuations time series and compute turbulence related quantities, such as turbulence intensities and Reynolds stresses.</p><p>The analysis of the mean flow revealed a complex interaction of the waves and currents combined flow. Depending on the relative strength of the current with respect to the waves, the superposition of the oscillatory flow may determine an increase or a decrease of the bottom friction experienced by the current.</p><p>The superposition of waves always induces an increase of turbulence intensity, except over gravel bed in which a decrease is observed in the very proximity of the bottom. Over gravel bed, the presence of the oscillatory flow determines a decrease of the turbulent intensity gradient, which may be related to the decrease of bottom friction observed in the mean flow analysis.</p><p>A turbulence quadrant analysis has been performed and showed that, in the presence of a lone current over a flat gravel bed, the turbulent ejection-sweep mechanism reaches parts of the water column closer to the water surface, similar to what has been observed in the turbulence intensity profiles.</p><p>The superposition of the oscillatory flow appears to induce an increment of ejections and sweeps intensity, which is associated with the shear stress increase at the bottom observed in the mean flow analysis. Moreover, a decrease of the number of ejection and sweep events has been recorded, which suggests a suppression of the ejection-sweep events alongside an enhancement of their intensity.</p>


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 674
Author(s):  
Amir Ghaderi ◽  
Mehdi Dasineh ◽  
Francesco Aristodemo ◽  
Costanza Aricò

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.


Author(s):  
Lei Wang ◽  
Ming-jun Diao

This study was conducted to investigate the velocity distribution and attenuation in free jumps on rough beds. Based on the length scale of jump length Lj, the velocity distribution of the free jump on a rough bed can be divided into four parts by three typical sections where are in the position of x=0.4Lj, x=0.8Lj, and x=1.2Lj. It seems that the velocity distribution near section x=0.4Lj is the most uneven. The velocity attenuation rate in the bottom half of the water is larger than that in the top half of the water. The attenuation of the maximum velocity um is mainly done from x=0 to x=0.8Lj. The results show the mixed triangular corrugated floor increases the resistance of hydraulic jump development and is very efficient in energy dissipation.


2021 ◽  
Vol 147 (1) ◽  
pp. 04020087
Author(s):  
Shayan Maleki ◽  
Virgilio Fiorotto

Sign in / Sign up

Export Citation Format

Share Document