First-passage problem of strongly nonlinear stochastic oscillators with external and internal resonances

2013 ◽  
Vol 39 ◽  
pp. 60-68 ◽  
Author(s):  
Y.J. Wu ◽  
Y.Y. Gao ◽  
L. Zhang
2020 ◽  
Vol 57 (1) ◽  
pp. 221-236 ◽  
Author(s):  
Shiyu Song ◽  
Yongjin Wang

AbstractWe explore the first passage problem for sticky reflecting diffusion processes with double exponential jumps. The joint Laplace transform of the first passage time to an upper level and the corresponding overshoot is studied. In particular, explicit solutions are presented when the diffusion part is driven by a drifted Brownian motion and by an Ornstein–Uhlenbeck process.


1993 ◽  
Vol 30 (04) ◽  
pp. 851-862 ◽  
Author(s):  
L. Chayes ◽  
C. Winfield

We introduce and study a novel type of first-passage percolation problem onwhere the associated first-passage time measures the density of interface between two types of sites. If the types, designated + and –, are independently assigned their values with probabilitypand (1 —p) respectively, we show that the density of interface is non-zero provided that both species are subcritical with regard to percolation, i.e.pc>p> 1 –pc.Furthermore, we show that asp↑pcorp↓ (1 –pc), the interface density vanishes with scaling behavior identical to the correlation length of the site percolation problem.


1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


1984 ◽  
Vol 51 (3) ◽  
pp. 674-679 ◽  
Author(s):  
P. H. Madsen ◽  
S. Krenk

The first-passage problem for a nonstationary stochastic process is formulated as an integral identity, which produces known bounds and series expansions as special cases, while approximation of the kernel leads to an integral equation for the first-passage probability density function. An accurate, explicit approximation formula for the kernel is derived, and the influence of uni or multi modal frequency content of the process is investigated. Numerical results provide comparisons with simulation results and alternative methods for narrow band processes, and also the case of a multimodal, nonstationary process is dealt with.


2016 ◽  
Vol 85 (3) ◽  
pp. 1445-1456 ◽  
Author(s):  
Christian Bucher ◽  
Alberto Di Matteo ◽  
Mario Di Paola ◽  
Antonina Pirrotta

Sign in / Sign up

Export Citation Format

Share Document