The density of interfaces: a new first-passage problem

1993 ◽  
Vol 30 (04) ◽  
pp. 851-862 ◽  
Author(s):  
L. Chayes ◽  
C. Winfield

We introduce and study a novel type of first-passage percolation problem onwhere the associated first-passage time measures the density of interface between two types of sites. If the types, designated + and –, are independently assigned their values with probabilitypand (1 —p) respectively, we show that the density of interface is non-zero provided that both species are subcritical with regard to percolation, i.e.pc>p> 1 –pc.Furthermore, we show that asp↑pcorp↓ (1 –pc), the interface density vanishes with scaling behavior identical to the correlation length of the site percolation problem.

1993 ◽  
Vol 30 (4) ◽  
pp. 851-862 ◽  
Author(s):  
L. Chayes ◽  
C. Winfield

We introduce and study a novel type of first-passage percolation problem on where the associated first-passage time measures the density of interface between two types of sites. If the types, designated + and –, are independently assigned their values with probability p and (1 — p) respectively, we show that the density of interface is non-zero provided that both species are subcritical with regard to percolation, i.e. pc > p > 1 – pc. Furthermore, we show that as p ↑ pc or p ↓ (1 – pc), the interface density vanishes with scaling behavior identical to the correlation length of the site percolation problem.


2020 ◽  
Vol 57 (1) ◽  
pp. 221-236 ◽  
Author(s):  
Shiyu Song ◽  
Yongjin Wang

AbstractWe explore the first passage problem for sticky reflecting diffusion processes with double exponential jumps. The joint Laplace transform of the first passage time to an upper level and the corresponding overshoot is studied. In particular, explicit solutions are presented when the diffusion part is driven by a drifted Brownian motion and by an Ornstein–Uhlenbeck process.


1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


1977 ◽  
Vol 9 (01) ◽  
pp. 38-54 ◽  
Author(s):  
R. T. Smythe ◽  
John C. Wierman

We consider several problems in the theory of first-passage percolation on the two-dimensional integer lattice. Our results include: (i) a mean ergodic theorem for the first-passage time from (0,0) to the line x = n; (ii) a proof that the time constant is zero when the atom at zero of the underlying distribution exceeds C, the critical percolation probability for the square lattice; (iii) a proof of the a.s. existence of routes for the unrestricted first-passage processes; (iv) a.s. and mean ergodic theorems for a class of reach processes; (v) continuity results for the time constant as a functional of the underlying distribution.


1976 ◽  
Vol 13 (02) ◽  
pp. 290-300 ◽  
Author(s):  
R. T. Smythe

We extend some results of Hammersley and Welsh concerning first-passage percolation on the two-dimensional integer lattice. Our results include: (i) weak renewal theorems for the unrestricted reach processes; (ii) an L 1-ergodic theorem for the unrestricted first-passage time from (0, 0) to the line X = n; and (iii) weakening of the boundedness restrictions on the underlying distribution in Hammersley and Welsh's weak renewal theorems for the cylinder reach processes.


1977 ◽  
Vol 9 (1) ◽  
pp. 38-54 ◽  
Author(s):  
R. T. Smythe ◽  
John C. Wierman

We consider several problems in the theory of first-passage percolation on the two-dimensional integer lattice. Our results include: (i) a mean ergodic theorem for the first-passage time from (0,0) to the line x = n; (ii) a proof that the time constant is zero when the atom at zero of the underlying distribution exceeds C, the critical percolation probability for the square lattice; (iii) a proof of the a.s. existence of routes for the unrestricted first-passage processes; (iv) a.s. and mean ergodic theorems for a class of reach processes; (v) continuity results for the time constant as a functional of the underlying distribution.


2011 ◽  
Vol 20 (3) ◽  
pp. 435-453 ◽  
Author(s):  
LEANDRO P. R. PIMENTEL

In this paper we study planar first-passage percolation (FPP) models on random Delaunay triangulations. In [14], Vahidi-Asl and Wierman showed, using sub-additivity theory, that the rescaled first-passage time converges to a finite and non-negative constant μ. We show a sufficient condition to ensure that μ>0 and derive some upper bounds for fluctuations. Our proofs are based on percolation ideas and on the method of martingales with bounded increments.


1976 ◽  
Vol 13 (2) ◽  
pp. 290-300 ◽  
Author(s):  
R. T. Smythe

We extend some results of Hammersley and Welsh concerning first-passage percolation on the two-dimensional integer lattice. Our results include: (i) weak renewal theorems for the unrestricted reach processes; (ii) an L1-ergodic theorem for the unrestricted first-passage time from (0, 0) to the line X = n; and (iii) weakening of the boundedness restrictions on the underlying distribution in Hammersley and Welsh's weak renewal theorems for the cylinder reach processes.


1986 ◽  
Vol 23 (3) ◽  
pp. 670-678
Author(s):  
S. Lalley

The process of interest is a controlled random walk in two dimensions: whenever the walker is above the main diagonal, the next increment to his position is chosen from a distribution FA; whenever the walker is below the diagonal, the next increment comes from another distribution FB. The two distributions have mean vectors which tend to push the walker back toward the diagonal. We analyze the problem of first passage to the first quadrant, obtaining explicit representations for the limiting first-entry distribution and expected first-passage time.


Sign in / Sign up

Export Citation Format

Share Document