Spatial arbitrarily curved microbeams with the modified couple stress theory: Formulation of equations of motion

Author(s):  
Duy Vo ◽  
Kaiyu Zhou ◽  
Jaroon Rungamornrat ◽  
Tinh Quoc Bui
2017 ◽  
Vol 22 (1) ◽  
pp. 55-86 ◽  
Author(s):  
Mohammad Arefi ◽  
Masoud Kiani ◽  
Ashraf M Zenkour

The present work is devoted to the free vibration analysis of elastic three-layered nano-/micro-plate with exponentially graded core and piezomagnetic face-sheets using the modified couple stress theory. To capture size-dependency for a nano-/micro-sized rectangular plate, the couple stress theory is used as a non-classical continuum theory. The rectangular elastic three-layered nano-/micro-plate is resting on Pasternak’s foundation. The present model contains one material length scale parameter and can capture the size effect. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on the modified couple stress theory and first-order shear deformation theory. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually the natural frequency is scrutinized for different side length ratio, thickness ratio, inhomogeneity parameter, material length scale, and parameters of foundation numerically.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
R. Ansari ◽  
M. A. Ashrafi ◽  
S. Hosseinzadeh

The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.


Sign in / Sign up

Export Citation Format

Share Document