The IR and Raman spectra of polyaniline adsorbed on the glass surface; comparison of experimental, empirical force field, and quantum chemical results

2014 ◽  
Vol 57 ◽  
pp. 47-57 ◽  
Author(s):  
Jonáš Tokarský ◽  
Michal Maixner ◽  
Pavlína Peikertová ◽  
Lenka Kulhánková ◽  
Jaroslav V. Burda
1975 ◽  
Vol 30 (7-8) ◽  
pp. 539-543 ◽  
Author(s):  
Reinhard Demuth ◽  
Joseph Grobe ◽  
Robert Rau

The gas phase IR and liquid phase IR and Raman spectra of (CF3)2PMn(CO)5 and (CF3)2AsMn(CO)6 have been recorded. The spectra are assigned on the basis of a normal coordinate analysis using a transferred force field.


1981 ◽  
Vol 59 (19) ◽  
pp. 2909-2920 ◽  
Author(s):  
John E. Drake ◽  
Boris M. Glavinčevski ◽  
Layla N. Khasrou

Methylthiosilanes of the type (CH3)nH3−nSiSCH3, n = 0–3, and (CH3)HSi(SCH3)2 have been prepared. Their ir and Raman spectra were recorded and assigned. The assignments were supported by normal coordinate analyses based on a modified valence force field.


1994 ◽  
Vol 49 (6) ◽  
pp. 753-758 ◽  
Author(s):  
P. Prillwitz ◽  
W. Preetz

The IR and Raman spectra of the ten bromo-iodo-rhenates(IV) [ReBrnI6-n]2-, n = 0 -6 , including the geometrical isomers for n - 2,3,4, have been recorded at 80 K. The vibrational spectra are completely assigned according to point groups Oh, D4h, C4v, C3v, and C2v, as supported by normal coordinate analyses based on a general valence force field. Due to the different mms-influences Br < I in asymmetric axes Br•-Re-I', the Re-I' bonds are strengthened and the Re-Br• bonds are weakened, as indicated by valence force constants, for Re-I' on average 8,5% higher and for Os-Br• 8,3% lower, as compared with the values calculated for symmetric I-Re-I and Br-Re-Br axes, respectively


1999 ◽  
Author(s):  
Jozef Ulicny ◽  
Nicolas Leulliot ◽  
Lydie Grajcar ◽  
Marie-Hélène Baron ◽  
Hervé Jobic ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
I Mamarelis ◽  
V Mamareli ◽  
M Kyriakidou ◽  
O Tanis ◽  
C Mamareli ◽  
...  

Abstract Background The atherosclerotic ascending aorta could represent a potential source of emboli or could be an indicator of atherosclerosis in general with high mortality. The mechanism of aneurysm formation and atherosclerosis of the ascending aorta at the molecular level has not yet been clarified. To approach the mechanism of ascending aortic lesions and mineralization at a molecular level, we used the non-destructive FT-IR, Raman spectroscopy, SEM and Hypermicroscope. Methods Six ascending aorta biopsies were obtained from patients who underwent aortic valve replacement (AVR) cardiac surgery. CytoViva (einst inc) hyperspectral microscope was used to obtain the images of ascending aorta. The samples were dissolved in hexane on a microscope glass plate. The FT-IR and Raman spectra were recorded with Nicolet 6700 thermoshintific and micro-Raman Reinshaw (785nm, 145 mwatt), respectively. The architecture of ascending aorta biopsies was obtained by using scanning electron microscope (SEM of Fei Co) without any coating. Results FT-IR and Raman spectra showed changes arising from the increasing of lipophilic environment and aggregate formation (Fig. 1). The band at 1744 cm–1 is attributed to aldehyde CHO mode due to oxidation of lipids. The shifts of the bands of the amide I and amide II bands to lower are associated with protein damage, in agreement with SEM data. The bands at about 1170–1000 cm–1 resulted from the C-O-C of advanced glycation products as result of connecting tissues fragmentations and polymerization. The spectroscopic data were analogous with the lesions observed with SEM and hypermicroscopic images. Conclusions The present innovate molecular structure analysis showed that upon ascending aorta aneurysm development an excess of lipophilic aggregate formation and protein lesions, changing the elasticity of the aorta's wall. The released Ca2+ interacted mostly with carbonate-terminal of cellular protein chains accelerated the ascending aorta calcifications. Figure 1. FT-IR and Raman spectra Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document