scholarly journals Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains

2020 ◽  
Vol 329 ◽  
pp. 113275 ◽  
Author(s):  
Austin C. Boese ◽  
Auston Eckert ◽  
Milton H. Hamblin ◽  
Jean-Pyo Lee
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Auston Eckert ◽  
Milton H Hamblin ◽  
Jean-Pyo Lee

Background: Presently, tissue plasminogen activator (tPA) is the sole FDA-approved antithrombotic treatment available for stroke. However, tPA’s harmful side effects within the central nervous system can exacerbate blood-brain barrier (BBB) damage and increase mortality. Patients should receive tPA less than 4.5 hours post-stroke. Although age alone is not an impediment for tPA treatment, the harmful effects of delayed tPA (>4.5h), particularly on aged stroke animals, have not been well studied. We reported that intracranial transplantation of neural stem cells (hNSCs) ameliorates BBB damage caused by ischemic stroke. In this study, we examined the combined effects of minocycline (a neuroprotective and anti-inflammatory drug) and hNSC transplantation on the mortality of delayed tPA-treated aged mice within 48h post-stroke. Methods and Results: We utilized the middle cerebral artery occlusion stroke mouse model to induce focal cerebral ischemia followed by reperfusion (MCAO/R). 6h post-MCAO, we administered tPA intravenously. Minocycline was administered intraperitoneally at various time points prior to tPA injection. One day post-stroke, we injected hNSCs intracranially. Previously, we reported that hNSCs (both human and mouse) transplanted into the brain 24h post-stroke rapidly improve neurological outcome in young-adult mice (4-5mo). In our current study, tPA administered within 4.5h did not increase mortality in either young-adult or aged mice. However, we found delayed tPA treatment (6h post-stroke) significantly increased the mortality of aged mice (13-18 mo) but not in young-adult mice. Here, we report that by combining minocycline prior to tPA significantly reduced mortality. Furthermore, transplanting hNSCs in minocycline-treated mice further ameliorated the pathophysiology caused by delayed tPA. Conclusions: Our findings implicate that administering the anti-apototic and anti-inflammatory drug prior to tPA injection, and then post-treating with multipotent neuroprotective hNSCs might expand the time window of tPA and reduce reperfusion injury.


Stroke ◽  
2007 ◽  
Vol 38 (3) ◽  
pp. 1076-1078 ◽  
Author(s):  
José Álvarez-Sabín ◽  
Rafael Huertas ◽  
Manolo Quintana ◽  
Marta Rubiera ◽  
Pilar Delgado ◽  
...  

2014 ◽  
Vol 5 (6) ◽  
pp. 129 ◽  
Author(s):  
Lei Huang ◽  
Sunnie Wong ◽  
Evan Y Snyder ◽  
Milton H Hamblin ◽  
Jean-Pyo Lee

Stroke ◽  
2003 ◽  
Vol 34 (5) ◽  
pp. 1235-1240 ◽  
Author(s):  
José Alvarez-Sabín ◽  
Carlos A. Molina ◽  
Joan Montaner ◽  
Juan F. Arenillas ◽  
Rafael Huertas ◽  
...  

Stroke ◽  
2004 ◽  
Vol 35 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Carlos A. Molina ◽  
Andrei V. Alexandrov ◽  
Andrew M. Demchuk ◽  
Maher Saqqur ◽  
Ken Uchino ◽  
...  

2009 ◽  
Vol 34 (7) ◽  
pp. 1183-1194 ◽  
Author(s):  
Krishna Kumar Veeravalli ◽  
Venkata Ramesh Dasari ◽  
Andrew J. Tsung ◽  
Dzung H. Dinh ◽  
Meena Gujrati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document