Experimental investigation of incident shock wave/boundary layer interaction controlled by pulsed spark discharge array

Author(s):  
Luo Yanhao ◽  
Liang Hua ◽  
Li Jun ◽  
Guo Shanguang ◽  
Tang Mengxiao ◽  
...  
2020 ◽  
Vol 23 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Zhang Qinghu ◽  
Zhu Zhiwei ◽  
Lin Jingzhou ◽  
Xie Futian ◽  
Zhong Jun

AIAA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Tianshu Liu ◽  
David M. Salazar ◽  
Jim Crafton ◽  
Nickolay Rogoshchenkov ◽  
Colleen Ryan ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-yi Zhou ◽  
Yi-long Zhao ◽  
Yu-xin Zhao

The separation length of shock wave/boundary layer interaction (SWBLI) was studied by a numerical method, which was validated by experimental results. The computational domain was two-dimensional (2-D). The flow field was an incident oblique shock interacting with a turbulent boundary layer on a flat adiabatic plate. According to the simulation data, the dependency of the separation length on the relevant flow parameters, such as the incident shock strength, Reynolds number, and Mach number, was analyzed in the range of 2≤M≤7. Based on the relations with the flow parameters, two models of the separation length at low and high Mach numbers were proposed, respectively, which can be used to predict the extent of the separation in the SWBLI.


2009 ◽  
Vol 635 ◽  
pp. 47-74 ◽  
Author(s):  
R. A. HUMBLE ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is investigated using particle image velocimetry in combination with data processing using the proper orthogonal decomposition, to obtain an instantaneous and statistical description of the unsteady flow organization. The global structure of the interaction is observed to vary considerably in time. Although reversed flow is often measured instantaneously, on average no reversed flow is observed. On an instantaneous basis, the interaction exhibits a multi-layered structure, characterized by a relatively high-velocity outer region and low-velocity inner region. Discrete vortical structures are prevalent along their interface, which create an intermittent fluid exchange as they propagate downstream. A statistical analysis suggests that the instantaneous fullness of the incoming boundary layer velocity profile is (weakly) correlated with the size of the separation bubble and position of the reflected shock wave. The eigenmodes show an energetic association between velocity fluctuations within the incoming boundary layer, separated flow region and across the reflected shock wave, and portray subspace features that represent the phenomenology observed within the instantaneous realizations.


Author(s):  
Liu Jian ◽  
Duan Wenhua ◽  
Zhang Liangji ◽  
Qiao Weiyang

Abstract In this paper, the effect of round jet with inclination angle 135° upstream the throat on the suction surface on shock wave boundary-layer interaction was investigated in a transonic turbine cascade, and the vortical structures near the jet region were analyzed. Owing to locally high concave curvature on the pressure side profile, the double shock wave structure was obtained in the turbine passage near the pressure side trailing edge. The first incident shock does not induce the boundary layer separation. The second strong incident shock transmits from the trailing edge of the pressure side and reaches the suction side of the adjacent blade. Strong interaction between the suction side boundary layer and incident shock wave exists in this region, and the separation bubble appears in the no jet case. The complex shock wave system and corresponding flow characters are analyzed. Due to the complex vortical structures on the blade suction surface with suction side jet, the pressure distribution on the suction side changes, and the shock wave system in the transonic turbine passage is rearranged, thereby influencing the shock wave boundary layer interaction. The separation onset decays with the suction side jet, and it keeps move downstream with increasing jet velocity. Length of the separation bubble is significantly reduced with suction side jet. However, when the jet velocity is beyond a certain value, the effect of suction side jet will not improve. The complex vortical structures with suction side jet will reenergizing to the low momentum fluid within boundary layer, and the mean velocity profiles in the boundary layer near the shock wave boundary layer interaction religion with suction side jet are more solid than the no jet case, which infers stronger resistance to flow separation. Complicated vortical structures exist near jet region, the Kelvin–Helmholtz instabilities of the shear layer of the jet flow and its coherent structures dominate the unsteadiness of the suction surface. The incident shock wave enhances the pressure fluctuation in the SBLI region, whereas the effect concentrates only on the first harmonic of the K-H instability but not higher frequencies.


Sign in / Sign up

Export Citation Format

Share Document