Long-term (1983–2012) assessment of three tillage systems on the energy use efficiency, crop production and seeding emergence in a rain fed cereal monoculture in semiarid conditions in central Spain

2014 ◽  
Vol 166 ◽  
pp. 26-37 ◽  
Author(s):  
J.L. Hernanz ◽  
V. Sánchez-Girón ◽  
L. Navarrete ◽  
M.J. Sánchez
2016 ◽  
Vol 18 (02) ◽  
pp. 353-361 ◽  
Author(s):  
Alper Taner ◽  
Yasin Kaya ◽  
Rifat Zafer Aisoy ◽  
İrfan Gültekin ◽  
Fevzi Partigöç

2021 ◽  
Vol 67 (No. 12) ◽  
pp. 739-746
Author(s):  
Gerhard Moitzi ◽  
Reinhard Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.  


2020 ◽  
Vol 63 (2) ◽  
pp. 259-264
Author(s):  
Omar González-Cueto ◽  
Fidel Diego-Nava ◽  
Elvis López-Bravo ◽  
Ruslán Ferreira-Camacho ◽  
Diana Estefania Zambrano-Casanova ◽  
...  

HighlightsOrganic cropping systems were less efficient in energy use.Sugarcane for seed was the highest energy input due to the consumption of 12 t ha-1 of seed.The second largest part of the energy input was the fuel consumed during mechanized operations.Abstract.Analysis of energy use efficiency provides an assessment of non-renewable energy consumption; it is a useful indicator of environmental and long-term sustainability when comparing cropping systems. This study aimed to estimate the energy use efficiency of organic and conventional cropping systems of sugarcane for sugar production in central Cuba. Estimation of the energy use efficiency included analysis of four cropping systems. The energy input in the field until harvest and transport to the sugar mill was the limit of this analysis. The results showed that organic cropping systems were less efficient in energy use because of the greater number of field operations, mainly for weed control by manual and mechanical cultivation. Organic cropping systems also had lower yield compared with conventional systems due to their use of low doses of organic products, instead of agrochemical fertilizers, for plant nutrition. In all cropping systems evaluated, sugarcane used for seed was the largest part of the energy input due to the consumption of 12 t ha-1 of seed, representing an average of 89% of the total energy input for the sugarcane cropping systems. The second largest part of the energy input was the fuel consumed during mechanized operations. Irrigation was the third largest part of the energy input for organic cropping systems and the second largest part of the energy input for conventional cropping systems. Keywords: Agricultural systems, Energy balance, Energy input, Energy output.


Pedosphere ◽  
2018 ◽  
Vol 28 (6) ◽  
pp. 952-963 ◽  
Author(s):  
Chiter M. PARIHAR ◽  
Malu R. YADAV ◽  
Shankar L. JAT ◽  
Aditya K. SINGH ◽  
Bhupender KUMAR ◽  
...  

2018 ◽  
Vol 115 (10) ◽  
pp. 2335-2340 ◽  
Author(s):  
Pedro Pellegrini ◽  
Roberto J. Fernández

We analyzed crop production, physical inputs, and land use at the country level to assess technological changes behind the threefold increase in global crop production from 1961 to 2014. We translated machinery, fuel, and fertilizer to embedded energy units that, when summed up, provided a measure of agricultural intensification (human subsidy per hectare) for crops in the 58 countries responsible for 95% of global production. Worldwide, there was a 137% increase in input use per hectare, reaching 13 EJ, or 2.6% of the world’s primary energy supply, versus only a 10% increase in land use. Intensification was marked in Asia and Latin America, where input-use levels reached those that North America and Europe had in the earlier years of the period; the increase was more accentuated, irrespective of continent, for the 12 countries with mostly irrigated production. Half of the countries (28/58), mainly developed ones, had an average subsidy >5 GJ/ha/y (with fertilizers accounting for 27% in 1961 and 45% in 2014), with most of them (23/28) using about the same area or less than in 1961 (net land sparing of 31 Mha). Most of the remaining countries (24/30 with inputs <5 GJ/ha/y), mainly developing ones, increased their cropped area (net land extensification of 135 Mha). Overall, energy-use efficiency (crop output/inputs) followed a U-shaped trajectory starting at about 3 and finishing close to 4. The prospects of a more sustainable intensification are discussed, and the inadequacy of the land-sparing model expectation of protecting wilderness via intensified agriculture is highlighted.


Sign in / Sign up

Export Citation Format

Share Document