scholarly journals External damage to trawl-caught northeast arctic cod (Gadus morhua): Effect of codend design

2019 ◽  
Vol 214 ◽  
pp. 136-147 ◽  
Author(s):  
Guro Møen Tveit ◽  
Manu Sistiaga ◽  
Bent Herrmann ◽  
Jesse Brinkhof
2005 ◽  
Vol 56 (5) ◽  
pp. 753 ◽  
Author(s):  
Erik Berg ◽  
Tuula H. Sarvas ◽  
Alf Harbitz ◽  
Svein Erik Fevolden ◽  
Arnt Børre Salberg

The distinction between north-east Arctic cod and Norwegian coastal cod, two major groups of Atlantic cod (Gadus morhua L.), has for many years been based on different distance and shape similarities between the two first translucent growth zones in the otoliths, subjectively decided by visual inspection in a binocular. To analyse the certainty of this technique, four independent readers have classified 263 cod otoliths in total from five different geographical areas. For three of the readers, between 82% and 89% of the classification results coincided with independent results based on genetic analyses. Further, 38 cod otoliths, where the readers were certain of the classification (21 north-east Arctic cod and 17 coastal cod) were classified by several image analysis methods. A complete separation was obtained by using the ratio of the circumferences of the two zones, providing a typical ratio of approximately 2 for coastal and 1.5 for north-east Arctic cod. The otolith method for separating the two types of cod has been considered adequately accurate in assessing the two stocks of cod. However, the method is sensitive to subjective interpretation, and action needs to be taken to minimise the difference in interpretation among otolith readers.


2007 ◽  
Vol 64 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Cecilie Kvamme ◽  
Bjarte Bogstad

Abstract Kvamme, C., and Bogstad, B. 2007. The effect of including length structure in yield-per-recruit estimates for northeast Arctic cod. – ICES Journal of Marine Science, 64: 357–368. For northeast Arctic cod (Gadus morhua), traditional age-based estimates of yield per recruit (YPR) are compared with alternative, though comparable, YPR estimates calculated using an age–length-structured model. In the age–length-structured model, growth, fishing mortality, and natural mortality depend only on length, not on age. This model considers possible changes in size-at-age caused by, for example, a length-selective fishery, and therefore, by comparing the different YPR estimates, the importance of considering the stock's length structure can be evaluated. Length- and weight-at-age of stock and catches were influenced by exploitation pattern and pressure. Such changes are not considered in traditional estimates of YPR, for which weight-at-age is fixed and strictly speaking only representative for the current fishery. Consequently, traditional YPR estimates were somewhat higher than the age–length-based estimates for exploiting smaller fish than at present, and the other way round for exploiting larger fish. Both models indicated a gain in YPR for reducing just exploitation pressure (traditional YPR, 13%; alternative model, 20%) or both reducing exploitation pressure and postponing exploitation (traditional YPR, 23–31%; alternative model, 33–48%), compared with the current fishery.


2009 ◽  
Vol 66 (9) ◽  
pp. 1582-1596 ◽  
Author(s):  
Jon Egil Skjæraasen ◽  
James Kennedy ◽  
Anders Thorsen ◽  
Merete Fonn ◽  
Bente Njøs Strand ◽  
...  

To examine mechanisms that affect fecundity, atresia, and skipped spawning in Northeast Arctic cod ( Gadus morhua ), we conducted an experiment where wild-caught cod (>60 cm) kept under restricted food regimes were subjected to monthly biopsies and hormonal and physical measurements. The power of body weight as a fecundity proxy increased until the presumed end of follicle proliferation in early November; thereafter, it remained stable. Atresia occurred in most females, but for maturing females, mainly close to spawning. Eighteen percent of the females had small gonads with predominantly previtellogenic oocytes at sacrifice in January. These females were past-spawners, verified by postovulatory follicles in their gonads. These “skippers” had lower condition than maturing cod from December, smaller livers upon sacrifice, and lower plasma 17β-estradiol values from early November. Until November, oocytes developed similarly for all females, but in November, oocyte development was arrested at the early cortical alveoli stage and atresia occurred in all skippers. In summary, fecundity and skipped spawning seem highly influenced by energy reserves during early vitellogenesis and was limited to females only. Finally, skippers were identifiable long before the predicted onset of spawning, which could have implications for forecasting of egg production and hence stock–recruitment relationships.


2016 ◽  
Vol 73 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Bjarte Bogstad ◽  
Natalia A. Yaragina ◽  
Richard D.M. Nash

Recruitment at age 3 of the Northeast Arctic cod (Gadus morhua) is highly variable. It has generally been believed that year-class strength for this stock is determined prior to settlement to the bottom after about 6 months. However, newer observations indicate that year-class strength may change considerably between settlement and recruitment at age 3. Our analyses cover the 1983–2009 year classes where comprehensive data from total egg production (TEP), surveys, and stock assessments were available for a thorough examination of these cohorts. On average, only 6 out of 1 million of a new generation at the TEP stage reaches the age of recruitment to the fishery. The between-cohort variability in abundance is greatest at the ages 0–1 stage. Although the mortality is highest during the first months of life, the year-class strength can also be affected considerably by processes taking place between the 0-group stage (∼6 months) and age 3. The mortality in this period of life seems to be strongly density-dependent, and cannibalism is an important source of mortality.


2013 ◽  
Vol 67 (1-2) ◽  
pp. 187-195 ◽  
Author(s):  
Kaare Julshamn ◽  
Arne Duinker ◽  
Bente M. Nilsen ◽  
Sylvia Frantzen ◽  
Amund Maage ◽  
...  

2009 ◽  
Vol 66 (6) ◽  
pp. 1149-1154 ◽  
Author(s):  
Geir Pedersen ◽  
Rolf J. Korneliussen

Abstract Pedersen, G., and Korneliussen, R. J. 2009. The relative frequency response derived from individually separated targets of northeast Arctic cod (Gadus morhua), saithe (Pollachius virens), and Norway pout (Trisopterus esmarkii). – ICES Journal of Marine Science, 66: 1149–1154. The concept of relative frequency response r(f) of fish is an important feature used to characterize acoustic targets. It is defined as the volume-backscattering coefficient at a specific frequency f relative to that of a reference frequency. When based on volume backscattering, r(f) reliably distinguishes several acoustic categories if the insonified volumes are reasonably comparable between the frequencies, and that enough samples and targets are measured to constrain stochastic variations in the data within acceptable limits. Therefore, r(f) distinguishes different fish species with swimbladders poorly if they appear as single targets. Using target-strength (TS) data, the acoustic measurements are more spatially comparable, and averaging the TS over an echotrace of a single fish improves the ability to distinguish between different species. Frequency response was estimated using TS data from in situ measurements, collected using Simrad EK60 echosounders with split-beam transducers transmitting simultaneously at 18, 38, 70, 120, and 200 kHz. Selected series with nearly pure catches of northeast Arctic cod (Gadus morhua), saithe (Pollachius virens), and Norway pout (Trisopterus esmarkii) were analysed using a target-tracking algorithm. The frequency response of northeast Arctic cod and saithe did not differ significantly, but at high frequencies, the response of both northeast Arctic cod and saithe differed from that of Norway pout. However, in the latter case, northeast Arctic cod and saithe could be separated, because of their different TS magnitudes.


Sign in / Sign up

Export Citation Format

Share Document